
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Test Case Prioritization for

Software Product Line Testing

by

Sundus Ali Qureshi

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Computer Science

2018

www.cust.edu.pk
www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2018 by Sundus Ali Qureshi

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

Dedication

This thesis work is dedicated to my parents, who have been a continuous source

of support, love, and encouragement during the challenges of life. I also dedicate

this work to my teachers, who always thought me to work hard with their

constant supervision and encouragement.

CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY

ISLAMABAD

CERTIFICATE OF APPROVAL

Test Case Prioritization for Software Product Line Testing

by

Sundus Ali Qureshi

MCS163027

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Rizwan Bin Faiz RIU, Islamabad

(b) Internal Examiner Dr. Muhammad Tanvir Afzal CUST, Islamabad

(c) Supervisor Dr. Aamer Nadeem CUST, Islamabad

Dr. Aamer Nadeem

Thesis Supervisor

October, 2018

Dr. Nayyer Masood Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Computer Science Faculty of Computing

October, 2018 October, 2018

iv

Author’s Declaration

I, Sundus Ali Qureshi hereby state that my MS thesis titled “Test Case Pri-

oritization for Software Product Line Testing” is my own work and has not

been submitted previously by me for taking any degree from Capital University

of Science and Technology, Islamabad or anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

Sundus Ali Qureshi

Registration No: MCS163027

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Test Case

Prioritization for Software Product Line Testing” is solely my research work

with no significant contribution from any other person. Small contribution/help

wherever taken has been dully acknowledged and that complete thesis has been

written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

Sundus Ali Qureshi

Registration No: MCS163027

vi

Acknowledgements

First I would like to thank ALLAH (S.W.T) for providing me with the strength,

knowledge, and blessing to complete this thesis, without His help and blessing it

was not possible.

I would like to thank my supervisor Dr. Aamer Nadeem for his patient guidance,

which encouraged me for self-learning and advices he has provided throughout my

times as his student. I have been very lucky to have a supervisor who cared so

much about my work, and who responded to my queries. My sincere gratitude

to him for the tremendous ongoing encouragements that have throughout enabled

me to put in the efforts and all-time dedication for the attainment of my research

work. I am thankful to all my teachers who helped me and all the members of

CSD (Center for Software Dependability) group especially Mr. Qamar uz Zaman

for their comment and feedback on my thesis.

I cannot thank my parents enough for the education privilege that they have given

me; without this, it would have never been possible to accomplish this work. I

am thankful to my brothers and sister-in-law from whom I have got constant and

unconditional support with affection. I am grateful to my friend Asra Ishtiaq who

remained a source of moral support for me, which was the constant energy boost

for me.

In the last, I am grateful to everyone from my family to friends, from teachers to

colleagues who have always been a part of this research work.

vii

Abstract

Software Product Line (SPL) is a collection of similar products using a common set

of features to develop the product to fulfill a particular mission and to satisfy the

needs of the market segment. Instead of developing each product from scratch,

a common set of features combined to build the new product. The goal of the

product line is to provide reusability and variability of the software and reduce the

cost and time in producing the new software products with the improved quality.

Feature model (FM) provides the information about the features and relations

among them, it represents SPL too. FM enables to generate the products from the

combination of features. Combination of features may lead to exponential growth

in the number of products. Due to the combinatorial explosion of the products,

testing of SPL becomes a challenging task. A fault present in any feature can

appear in many products generated from the FM and can cause failure in many

products. To avoid such circumstances, the proper testing strategy is required to

be implemented.

To test all the derivable products is not feasible in terms of time and cost, as

the number of products increases exponentially with the numbers of features in

the FM. Test case prioritization for SPL is used to order the products based on

some criteria so that they are effective in time and cost with the ability to detect

maximum faults in it. Various approaches have been proposed for the prioritization

of the products based on some criteria. Existing criteria for prioritization are

feature priority criteria, feature coverage criteria, feature frequency criteria and

feature coupling criteria. Most of the techniques considered the feature coverage

and feature coupling complexity criteria for priotization of SPL product.

In this research, we have proposed a prioritization criterion that is the combination

of two criteria. First, individual feature complexity criteria and second, feature

coupling complexity criteria. Individual feature complexity is calculated from the

use case descriptions of the feature and feature coupling complexity criterion is

used from the existing approach in which we calculated how tightly features are

coupled. With the combination of these two criteria, a product’s complexity is

viii

calculated and the highest priority is assigned to the product that achieved the

highest complexity.

Proposed approach significantly improves the rate of fault detection. We have

performed detailed experimentation to measure the effectiveness of criterion based

on the rate of fault detection and evaluated our work with the existing technique

that performs the best in terms of fault detection rate. Three case studies are

used to evaluate the performance of our work. The results show that different

ordering of the same test suite leads to the considerable differences in the average

percentage of fault detection rate.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract vii

List of Figures xii

List of Tables xiv

List of Abbreviations xvi

1 Introduction 1

1.1 Software Product Lines . 1

1.1.1 Motivation for Software Product Line Development 3

1.1.2 Feature Model . 4

1.2 Software Product Line Testing . 8

1.3 Test Case Prioritization for SPL Testing 9

1.3.1 Prioritization Criteria . 10

1.3.2 Evaluation Metric . 10

1.4 Problem Statement . 11

1.5 Research Question . 12

1.6 Research Methodology . 12

1.7 Thesis Organization . 13

2 Literature Review 14

2.1 Prioritization Criteria based on Feature Coverage 14

Devroey et al., 2014 15

Henard et al., 2014 15

Al-Hajjaji et al., 2014 16

Wang et al., 2014 . 16

Sánchez et al., 2014 17

Al-Hajjaji et al., 2016 17

ix

x

Al-Hajjaji et al., 2017 18

Al-Hajjaji et al., 2017 18

2.2 Prioritization Criterion based on Feature 19

Ensan et al., 2011 . 19

Sánchez et al., 2014 20

2.3 Prioritization Criteria based on Feature Coupling 20

Sánchez et al., 2014 20

2.4 Analysis and Comparison . 21

2.4.1 Gap Analysis . 25

3 Proposed Approach 26

3.1 Proposed Prioritization Algorithm 27

3.2 Proposed Criterion for Product Prioritization 34

3.2.1 Feature Complexity . 35

Use Case Model . 35

Use Case Metrics . 37

3.2.2 Feature Coupling Complexity 40

3.2.3 Combining Feature Complexity and Feature Coupling Com-
plexity . 41

3.3 Example of Proposed Approach . 42

4 Implementation 52

4.1 Implementation Details . 52

4.1.1 Test Suite . 54

4.1.2 Feature Complexity . 55

4.1.3 Feature Coupling Complexity 56

4.1.4 Test Suite Prioritization . 57

5 Results and Discussion 59

5.1 Case Studies . 60

5.1.1 E-Commerce SPL . 60

5.1.2 Social Network SPL . 61

5.1.3 Transport Network SPL . 61

5.2 Fault Injection . 62

5.3 Evaluation Metric . 62

5.3.1 Example . 63

5.4 Experiment 1. Evaluation of Proposed Criterion Based on Different
values of α . 64

5.4.1 Prioritized Test Suites Based on Proposed Criterion 64

Prioritized list for E-Commerce 64

Prioritized list for Social Network 66

Prioritized list for Transport Network 67

5.4.2 Comparison . 69

5.5 Experiment 2. Evaluation of Proposed and Existing Criteria 70

xi

5.5.1 Prioritized Test Suites Based on Existing and Proposed Cri-
teria . 70

5.5.2 Comparison . 72

6 Conclusion and Future Work 77

6.1 Future work . 78

Bibliography 80

Appendices 87

A Prioritized Test Suite for Subject Product Line 87

B Subject Product Line . 95

C Test Suite for Subject Product Line 98

List of Figures

1.1 Feature Model Example. 5

1.2 Mandatory Feature. 5

1.3 Optional Feature. 6

1.4 Alternative Relation. 6

1.5 Or Relation. 7

1.6 Cross-tree Constraints. 7

3.1 An Illustration of Proposed Solution. 29

3.2 Feature-Model-Example. 43

3.3 Use Case Description. 44

4.1 FM in FeatureIDE. 53

4.2 Constraint Editor of FeatureIDE. 53

4.3 Configuration of FeatureIDE. 54

4.4 Class Diagram of Proposed Algorithm. 55

4.5 Output of Prioritized Test Suites on Console. 58

5.1 Graphical Representation of APFD for E-Commerce Product Line
Based on Different Values of α. 66

5.2 Graphical Representation of APFD for Social Network Product Line. 67

5.3 Graphical Representation of APFD for Transport Network Product
Line Based on Different Values of α. 69

5.4 APFD Comparison of Existing and Proposed Criterion for E-Commerce
Subject Product Line. 72

5.5 Graphical Representation of Fault Detection of Test Cases for E-
Commerce Subject Product Line. 73

5.6 APFD Comparison of Existing and Proposed Criterion for Social
Network Subject Product Line. 73

5.7 Graphical Representation of Fault Detection of Test Cases for Social
Network Subject Product Line. 74

5.8 APFD Comparison of Existing and Proposed Criterion for Trans-
port Network Subject Product Line. 74

5.9 Graphical Representation of Fault Detection of Test Cases for Trans-
port Network Subject Product Line. 75

5.10 Graphical Representation of APFD Comparison for Subject Prod-
uct Lines . 76

xii

xiii

B.1 E-Commerce Feature Model. 95

B.2 Social Network Feature Model. 96

B.3 Transport Network Feature Model. 97

List of Tables

2.1 Comparison of Techniques Based on Prioritization Criteria 23

3.1 Weights(α) for Test Suite . 42

3.2 Test Suite . 44

3.3 Use Case Metric Values for the Use Case of Figure 3.3 45

3.4 Complexity of Features . 46

3.5 FC of Test Suite . 47

3.6 Normalized FC of Test Suite . 47

3.7 VC and CC of Test Suite . 48

3.8 FCC of Test Suite . 49

3.9 FCC of Feature Model . 49

3.10 Normalized FCC of Test Suite . 50

3.11 Test Suite Complexities . 51

3.12 Prioritized Test Suite . 51

5.1 Summary of Subject Product Lines. 61

5.2 APFD for E-Commerce Product Line Based on Different Values of α. 65

5.3 APFD for Social Network Product Line Based on Different Values
of α. 66

5.4 APFD for Transport Network Product Line Based on Different Val-
ues of α. 68

5.5 Priority List for E-Commerce Product Line 70

5.6 Priority List for Social Network Product Line 71

5.7 Priority List for Transport Network Product Line 71

5.8 Comparison of APFD for Subject Product Lines. 76

A.1 Prioritized Test Suite for E-Commerce Product Line Based on Pro-
posed Criterion . 87

A.2 Prioritized Test Suite for Social Network Product Line Based on
Proposed Criterion . 90

A.3 Prioritized Test Suite for Transport Network Product Line Based
on Proposed Criterion . 92

C.1 Alphanumeric Character for Features of E-Commerce Product Line 98

C.2 E-Commerce Product Line Test Suite 99

C.3 Alphanumeric Character for Features of Social Network Product
Line . 102

xiv

xv

C.4 Social Network Product Line Test Suite 103

C.5 Alphanumeric Character for Features of Transport Network Prod-
uct Line . 107

C.6 Transport Network Product Line Test Suite 108

List of Abbreviations

SPL Software Product Line

SPLE Software Product Line Engineering

FM Feature Model

VC Variability Coverage

CC Cyclomatic Complexity

FC Feature Complexity

FCC Feature Coupling Complexity

TCC Test Case Complexity

APFD Average Percentage of Faults Detected

SPLOT Software Product Lines Online Tool

xvi

Chapter 1

Introduction

In this chapter, we give an introduction of the Software Product Line (SPL),

Feature Model (FM), and the test case prioritization of the SPL. The initial section

discusses the importance of SPL and FM, afterward, the challenges for testing the

SPL and prioritization criteria are discussed. In the last section of this chapter

problem statement and questions of research work is elaborated and the briefly

express the steps of the methodology of the proposed solution.

1.1 Software Product Lines

Software Product Line (SPL) is a concept of family, which is a collection of re-

lated products that share a common parts of the products known as core assets

to fulfill the needs of the particular market segment. Core assets are common in

all the products of the family and variable assets are used in particular products

[1]. These assets are commonly known as ’feature’ and features in SPL consider

as a commonality and variability of product. Behavior and capabilities (common-

ality and variability) of the features are used to differentiate among the products.

Instead of developing each product from scratch, a common set of features (core

assets) are combined with the variable features to build the new product. Product

line approach is known to be a successful approach for reusability because of the

1

Introduction 2

common features in a product line that can be used in many other products of the

family [2].

Product line allows producing a family of products, where a feature is incremented

in the functionality of the product to achieve the goal of the market with a sig-

nificant reduction in cost and time. The aim is to reuse the existing assets of

a product that is a part of SPL. Several assets are frequent in the products of

the product line and few of them are particular for individual products.Consider

an example of a product line of social messaging application in which core assets

can be the ’messages’ and ’call’ features whereas ’group video call’ and ’status

updates’ features can be the variable assets of the product line. Which means all

the products of the social messaging application contains a ’messages’ feature and

’call’ feature, as they are the basic functionality of the social messaging applica-

tion. However, in some social messaging application ’group video call’ and ’status

updates’ may or may not be present as they are optional features. WhatsApp is

an example that introduced ’status updates’ feature and now recently they intro-

duced ’group video call’ feature. These optional facilities are the variability of the

product line. Thus, Software Product Line Engineering (SPLE) is generating the

group of related software systems instead of generating the single software system.

For that reason, there is a need for a basic artifact that specifies and states the

variability and commonality between the products of related systems.

SPL represents prominent innovation to support the derivation of an extensive

range of applications. SPL gained significant momentum in recent years. Product

line approach is extensively used in hardware manufacturing fields but recently it

revealed a greater influence on the software development process [3]. For exam-

ple, all the car models introduced by car manufacturing company that introduces

the new cars with the additional functionality such as variation with gears and

doors. Many industrial case studies represent the effectiveness of SPL in reducing

time and development cost such as Nokia, Boeing, and Video Conference Systems

(VCSs) developed by Cisco Systems (Norway)[4, 5]. There are many other exam-

ples of successful companies that are using the SPL mentioned in the website the

Hall of Fame [6].

Introduction 3

1.1.1 Motivation for Software Product Line Development

The motivation to develop the product line instead of single system development

are as follows:

• The fundamental use of SPL is the reduction in cost. In a single system, if

there is a need to use the part of the software in several kinds of software

systems. It involves an extra cost and time in order to reuse them in the

different software platform. On the other hand, if parts of the software are

managed for the re-usability and the platform is created before then it can

reduce the cost per product as schedules and resources can be used again

from the preceding project [7]. The world’s largest company of diesel en-

gines, Cummins Inc. claimed that they reduced the effort of 360 engineers

that desired to manufacture the new software for the engine to 100 engi-

neers [8]. Before implementing the product line approach, teams of software

engineers developed the softwares that perform the operations of an engine

such as control the ignition and the fuel delivery, for each new product with

different standards, which conflict the end quality of resulting application.

They decided to build the core assets that are commonly used in all the

applications with the same quality that also reduced the number of software

engineers required to build the application.

• Quality of the software is enhanced by reviewing and testing of many prod-

ucts. The extensive testing in various kinds of a product entails a greater

opportunity of detecting faults and to accurate them, in that way products

quality can be increased [7]. It also beneficial for testing as test plans, test

cases and all the related test data are already available.

• Comparing with the single software development time, initially, product line

needs greater time to develop the common part of software but after that,

it requires considerably less time because the common part is reused in each

new products [7]. Most of the customer requirements are same and can be

Introduction 4

reused from the earlier project so that time and cost of requirement analysis

is saved and feasibility is assured.

SPL is also called families of products because in SPL one product is design and

multiple (families of products) products can be produced by reusing the features.

As SPLE leads to less development effort and increased productivity in terms of

cost, quality and time so, everyone in software industry wants to gain benefit by

adopting SPLE. SPL are represented through the model named as, feature models

(FM), they are most commonly used model for SPL in terms of variability [9].

There are some other models also that deals with the variability such as decision

model [10] and orthogonal variability model [7].

1.1.2 Feature Model

Feature models are renowned to be the most significant contributions of SPLE

[11, 12]. It was first presented in 1990 [13]. The major task of SPLE is to represent

the variability and commonality of the products. FM is used to fulfill the stated

purpose [14]. FM represents all achievable products of SPL. It is graphical and

tree-like hierarchical representations of product lines with assemble set of features

created by:

• Parent and child relations

• Constraints relations

The first proposed FM was the basic. Benavides explains two types of relations

depicted from the basic FM; Parent and child features relationships [15]. Root

feature is the feature that includes all the products. Child feature appears in

product only if parent of that child feature appears in the product. Relationships

between sub features i.e. cross-tree constraints consist of inclusion and exclusion.

figure 1.1 shows the simple example of FM.

Introduction 5

Figure 1.1: Feature Model Example.

Relationships between parent-child features categorized as:

1. Mandatory relation exists among parent and child feature which means

that child feature must be present in all the products in which parent feature

is included. Mandatory features are a compulsory feature in the product

that included in all the product of the SPL whenever the parent feature is

included.‘Calls’ is the mandatory child feature in the figure 1.2 with parent

feature ‘Mobile Phone’.

Figure 1.2: Mandatory Feature.

2. Optional relation exists among parent and child feature which means that

child feature is not compulsory to include in all product in which parent

Introduction 6

feature is included. GPS is the optional feature of parent ‘Mobile Phone’in

figure 1.3.

Figure 1.3: Optional Feature.

3. Alternative relation exists among parent and the set of child features from

which only one feature can be selected from the set of child features if parent

feature is selected in any product. ‘High Resolution’, ‘Color’ and ‘Basic’ are

the set of child features with alternative relation with ‘Screen’ parent feature

in figure 1.4.

Figure 1.4: Alternative Relation.

4. Or relation exists among parent and the group of child features from which

one or more than one feature can be selected from the set of child features

if the parent feature is selected in any product. ‘Camera’ and ‘MP3’ are the

set of child features with or relation with ‘Media; parent feature in figure

1.5.

Introduction 7

Figure 1.5: Or Relation.

Relationships between cross-tree constraint features that restrict the feature com-

bination categorized as:

1. Requires cross-tree constraints shows in figure 1.6 with single arrow. Fea-

ture ’A’ requires ’B’ feature that means if feature ’A’ appears in the product,

feature ’B’ must also appear in the same product with feature ’A’. ‘Camera’

feature requires ‘High Resolution’ feature in figure 1.1 whenever it appears

in any product.

2. Excludes cross-tree constraints shows with double arrow in the figure 1.6.

Feature ’A’ excludes ’B’ feature that means features ’A’ and ’B’should not

be included together in the product. As shown in figure 1.1 whenever ‘GPS’

feature is selected, ‘Basic’ feature must be deselected. Feature ’A’ along with

feature ’B’ cannot be appear in the same product.

Figure 1.6: Cross-tree Constraints.

Introduction 8

1.2 Software Product Line Testing

Software testing is a process to evaluate the effectiveness of software by detecting

errors and improving it. It is a significant activity of the Software Development

Life Cycle (SDLC), which consumes more than 50% of software resources. Software

development is a complex and error-prone task as faults might occur in any stage

of SDLC, they must be identified and removed as early as possible because if

they propagate to other stages, a lot of resources and efforts required to detect

them [16]. The objective of testing is to make ensure that the application is

working correctly by executing its code. This objective can be accomplished in

two ways. First, assist developers to find defects in program or application during

the development so that they can fix it. Second, to validate whether an application

is performing as mentioned in requirements [17].

Testing of a solo software system is a complicated task; SPL testing is more dif-

ficult and tricky because of the exponential increase in the number of products.

Including only one feature from the FM in the product line may cause to increase

a number of products generation. Testing each product from SPL would be ideal

but it is time-consuming and too costly, nearly impossible. The quantity of prod-

ucts generating from the SPL is increasing by the combination of features that

would lead to increases exponentially, resulting in millions of different products.

In SPL, test case is specifies as product or configuration (set of features) of the

product line [18–20]. A product (also known as configuration) is generated from

the FM by the selection of features; not all the feature selections are valid which

means in-valid feature selection can also be selected that produce meaningless

products. Constraint on the feature selection is known as feature dependency.

Configuration of a product line is generated by the selection of valid features and

feature selection is valid only if it fulfills the feature dependency.

Quantity of features increases in the FM might lead to generate millions of prod-

ucts from FM that means thousands of SPL test cases are generated from the

FM. Testing a huge number of test cases is a challenging task in SPL. Several

Introduction 9

approaches introduced to trim down the number of products required to be tested

but reduced numbers of products are still high and it is difficult to test a large

number of products within limited budget in terms of time and cost. Hence, tester

wishes to find more faults in less time within limited resources.

1.3 Test Case Prioritization for SPL Testing

Prioritization testing techniques for SPL can increase the effectiveness of test suite

by ordering the test cases to meet some performance goal. There are few ap-

proaches to prioritize products in order to make a list that suggest the order in

which these products are to be tested so that they are cost effective and less time

consuming with the ability to detect maximum faults in it. Prioritization tech-

nique does not select the sets of test cases from the test suite relatively it allows

each test case to be executed. However, Elbaum et al. stated that elimination of

test cases can be used in some cases by using test case prioritization with test case

minimization technique or with test case selection technique [21]. In SPL, prioriti-

zation technique can be used with the test case selection or test case minimization

techniques. Since the large number of test suite require to reduce the test suite

and then prioritize it.

Tester uses the priority list so that it can decide when to quit testing in case of

insufficient assets to execute all test cases. Probability is increased by the prioriti-

zation list that, in any case, if testing is ended before; because of some reason, the

most imperative tests with higher priority being executed, hence increasing the

rate of fault detection and facilitate troubleshooting in beginning periods of test-

ing. One benefit of prioritization testing is increases in the rate of fault detection.

If more faults detected by the minimum number of test cases and those test cases

are on the top of the prioritized list then the fault detection rate is increased. The

tester may be applied different prioritization criteria to assign priority to the test

cases in order to meet some objective.

Introduction 10

1.3.1 Prioritization Criteria

In SPL testing different criteria are used to prioritize the SPL test suite. Criteria

are used to reorder the test cases to meet some goal. Feature coverage criteria

is used which consider the coverage of features. The test case that covers the

maximum number of features obtained the highest priority in the ordering list.

Individual feature criteria is used in which the individual feature’s importance or

the individual feature’s frequency can be considered. Importance of the feature

may be based on the stakeholder’s priority or some other criteria. The test case

that contains a maximum number of important features attains the highest priority

in the ordering list whereas, the frequency of the feature is based on the highly

reused feature; a test case that contains a maximum number of those features that

have the highest commonality achieves the highest priority in the ordering list.

Another criterion, feature coupling complexity that measures how tightly features

are coupled. The test case that obtains the highest coupling complexity obtained

the highest priority in the ordering list.

1.3.2 Evaluation Metric

Test case prioritization order test cases in a way that give maximum benefit to

the tester. Each test case in test suite assigns priority so that test cases can

sort according their priorities and run earlier in the testing process [22]. Goal of

prioritization is to attain high fault detection. Fault detection rate is affected by

the ordering of test cases if the test case that cover maximum faults, run prior to

the test case that cover only one fault which is already covered by the previous test

case can increase the rate of fault detection within limited budget and time. After

prioritization of test suite, effectiveness of test suite in terms of fault detection can

be calculated by Average percentage of faults detected (APFD) metric developed

by Elbaum et al. [21]. It is the measure to check how early faults are detected by

the test suite [23]. Weighted average of faults detection for the system under test

Introduction 11

is used to measure the APFD metric. Range of values from 0 ot 1. High APFD

value indicate faster fault detection rate [24]. APFD metric is given below:

1− TF1 + TF2 +TFm
nm

+
1

2n

T is the test suite consists of n test cases where F is the set of m faults detected

by T . For ordering T ′ , TFi is the order of first case that detects the ith fault.

1.4 Problem Statement

Test case prioritization allows the tester to order the test cases based on some

criteria, so that test cases with the highest priority execute earlier in the testing

process to achieve some goal. Mostly used prioritization criteria for prioritizing

the products of SPL are:

• Feature coverage criteria

• Feature coupling complexity criteria

The first criteria considered the maximum coverage of the features in the product

and the highest priority is assigned to the product that covered the maximum

number of features. The other criteria considered the coupling of the features and

the highest priority is assigned to the product that contained the tightest coupled

features. Existing approaches considered the feature coverage and feature coupling

complexity. Not a single technique considered the feature complexity criterion for

the prioritization. Feature complexity can also be considered in order to get the

most complex test case. Also, most of the techniques used the single criterion

for prioritizaion and combination of the criteria is not considered. Prioritization

based on a single criterion ignored the other criteria, as feature coupling complexity

criteria ignored the feature complexity criteria. Combination of different criteria

and the complexity of the feature helps to improve the prioritization order of the

SPL.

Introduction 12

1.5 Research Question

In this research, we use feature model and use case descriptions to calculate the

complexities of features to order the test cases. However, the following factor must

also be taken into account:

RQ1. Does existing approaches consider the complexity of feature for pri-

oritization?

In order to answer the research question, literature survey is carried out to inves-

tigate the existing prioritization criteria and gaps in these criteria are identified

through depth analysis.

RQ2. Can test case prioritization through feature complexity improves fault

detection rate?

To answer this question, different experiments are performed to get the APFD val-

ues of test suites using feature complexity criterion with feature coupling criterion

and compared with the strongest existing criterion.

1.6 Research Methodology

1. In the first phase, we have done the literature review to find the most com-

mon and relevant prioritization technique use for SPL testing. After studying

various techniques, we conclude that most of the proposed techniques use

feature coverage criterion in which they consider only the differences among

the features of the product and does not achieve high APFD value. While

the approach that considers the complexity of the product is not appropriate,

as it does not consider complexity the feature individually.

2. To conquer the gap in existing techniques, we have proposed a new crite-

rion for ordering the SPL products in order to achieve a high rate of fault

detection.

Introduction 13

3. Implementation of our approach discussed in the following steps:

(a) In the initial phase, we will get the dataset of product lines from SPLOT

repository [25] after that test suite will generate from feature models

by using Feature IDE tool [26].

(b) Use case descriptions of the features from the feature models will gen-

erate. After that, we will measure the individual feature complexity

from the use case description.

(c) Next, we will measure the feature-coupling complexity using the exist-

ing criterion.

(d) After that, product complexity will be calculated by combining the

individual feature complexity and feature coupling complexity with the

help of an α factor in order to propose the new prioritization criterion.

(e) Afterward, prioritization will perform to order the test cases and get

the prioritized SPL test suite.

4. After generating the prioritized list, evaluation is performed. For evalu-

ation, we will compare the proposed criterion with the existing criterion

that achieved the highest APFD [20]. The test suite will prioritize based

on our proposed prioritization criterion and with the existing prioritization

criterion. Average Percentage of Faults Detection metric will use for the

comparison of both prioritized test suites.

1.7 Thesis Organization

Rest of the thesis is organized as; Chapter 2 surveys the existing approaches on

SPL prioritization and gap analysis. Chapter 3 defines a proposed technique for

prioritization and in chapter 4 the implementation of the proposed technique is

given. Chapter 5 discusses the results and chapter 6 conclude the research and

give direction for future work.

Chapter 2

Literature Review

In this chapter, we discuss related work that has been done in the filed of SPL

test case prioritization. We conducted a detailed survey analysis to find the gap

and comparison is performed among the existing approaches. The challenges of

software product lines testing are extensively discussed in many research work.

One of the most complex challenges is the interaction between the features that is

a large number of possible configurations to be tested. Since large number of test

cases, prioritization testing is an effective testing in early fault detection.

2.1 Prioritization Criteria based on Feature Cov-

erage

In the following section, criteria based on feature coverage are discussed. T-wise

coverage is used, some approaches used one value of T and few used the 2-wise

coverage in which they consider the coverage of pair-wise features, and in one

approaches T-wise coverage is used in which value of T > 3 is considered. All the

criteria in this section are feature coverage with different values of T.

text

14

Literature Review 15

Devroey et al., 2014 In this approach, Devroey et al. used feature coverage

criterion for prioritization [27]. They proposed a statistical approach in which be-

havior of products were considered for prioritization by using usage model (Markov

Chain). They used three models, one was feature diagram that represents the re-

lations and constraints between features, second was feature transition system

(FTS) that was used to model the system behavior, that is, mapping feature to

system behavior and third was usage model to extract the product selection and

prioritize them. First, the usage model selects the traces of the products that were

executed than second model FTS filter the transitions of products and keep those

products that were valid products and executed at least once, in the third step

each valid product that was executed combined with other valid products to gen-

erate the set of products. Probabilities of execution of products used to prioritize

the products. Products were prioritizing according to the probability after that;

test cases generated by applying the algorithm to the FTS. The evaluation was

not performed although the proposed technique is based on operational profile of

the software and highly depends on the nature of case study.

Henard et al., 2014 Feature coverage criterion is used in this approach for

prioritization [28]. Henard et al. proposed similarity based prioritization to con-

quer the combinatorial issues comes from large feature models. The author stated

that most combinatorial interaction testing (CIT) approaches fail to solve T-wise

coverage in which t > 3. Hence, use search-based approach to combine sampling

technique and prioritization based on similarity among configurations. They sam-

ples the product based on selected items. SAT solver used to produce the valid

configuration of feature models in the boolean formula with t = 3 to 6 and use dis-

similarity among the configuration to cover the maximum coverage. Prioritization

is applied on test cases with the highest summation of distance between them.

While their approach mainly targets the scalability of large feature models but

constraint solver takes a large amount of time. However, their goal is to achieve

maximum feature coverage instead of fault detection.

Literature Review 16

Al-Hajjaji et al., 2014 Feature coverage criterion and proposed similarity

based prioritization is used by Al-Hajjaji et al.[29]. It was applied to the products

before they were generated and implemented their criteria in FeatureIDE tool.

They did not considered the behavior of SPL as used by Devroey et al.[27]. The

goal was to increase the interaction coverage of SPL under test to grow faster after

some time. A methodology based on by selecting the product with a maximum

number of features as the first product to be tested. After that, the product

that has the minimum similarity with the previous product selected using the

hamming distance similarity measure. The distance was calculated by considering

deselected features as well with selected features. Then the least minimum similar

product with last two products was selected and repeats this process until all the

products were selected for prioritization order. FeatureIDE tool was used and

evaluation was performed by comparing with three sampling algorithms named

as CASA, ICPL, Chavatal and random orders. More errors were not detected

by the proposed approach when compared with sampling approach but it took

limited time for testing. When compared with random order, similarity-based

prioritization order was better.

Wang et al., 2014 This approach is based on feature pair wise coverage crite-

rion for prioritization with search based technique by Wang et al.[30]. Proposed

approach is different with all other approach as they focus on the cost aware priori-

tization. The objective was to minimize the execution time and maximize the rate

of fault detection within a limited budget of test resources. For multiple criteria,

four measures were defined one was cost measure (Overall Execution Cost) and

three were effectiveness measures (Prioritized Extent of test cases, Fault Detec-

tion Capability and Feature Pair-wise Coverage). Considering all four measures

fitness function was introduced. Evaluation performed using three search-based

algorithms GA, AVM and (1+1) EA with defined fitness function on 500 artificial

industrial problems. Two models are used to extract the test cases from the repos-

itory, Feature model and component family model . To test a product, relevant

Literature Review 17

features extracted from FM and the corresponding test cases for a product auto-

matically selected from the repository, then optimal order for selected test cases

find by proposed search based technique. (1+1)EA performed best in finding the

optimal solution for test case prioritization.

Sánchez et al., 2014 Five prioritization criteria have proposed in this approach

by Sánchez et al. based on the feature model metrics [20]. One is based on

the feature coverage criterion. Similar to Henard et al.[28] dissimilarity of the

products are considered and assign the highest priority to those products that are

most dissimilar to cover the higher feature coverage criterion and rate of fault

detection. For measuring the difference among products, Jaccard distance is used.

Prioritized list is obtained by calculating the highest distance among the products;

most dissimilar products are added to the prioritized list. The process continues

to add the product to the list that has the maximum distance with the list until

all the products are added. They have performed two experiments, in the first

experimentation, prioritization is applied to the test suite that generated randomly.

In the second experimentation, prioritization is applied on the test suite based on

combinatorial selection. Evaluation based on the APFD values and comparison

is performed. APFD of coverage criterion is high when compared with random

and 2-wise order, that is 87.4% and 86.9% respectively that was better than the

random and 2-wise selection.

Al-Hajjaji et al., 2016 Similarity based prioritization evaluation is performed

by Al-Hajjaji et al.[31] proposed previously in their paper [29]. They performed

two experimentations one was to compare the effectiveness and interaction cover-

age of similarity based approach with the random and interaction based approach

with real faults. The second was performed with artificially injected faults in the

product line to compare the effectiveness of default order of sampling algorithms

and prioritized order of proposed approach. When compared with real product

lines; they conclude that their approach significantly improved the effectiveness re-

sults with 92%, 95% and 97.5% APFD values but approximately identical in term

Literature Review 18

if increasing interaction coverage. When compared with default order of sampling

algorithms achieved 71%,81.1% and 81.8% APFD values.

Al-Hajjaji et al., 2017 Another feature coverage criterion for prioritization is

used in this approach that is based on the sampling process [32]. They used delta

to find the difference among the products whereas Sánchez et al., Wang et al.,

Henard et al. and Devroey et al. uses different method for feature coverage crite-

rion. They used similarity measure for finding the difference between the products

of SPL. Al-Hajjaji et al. proposed two approaches, first; prioritizing product us-

ing delta modeling to increase the rate of fault detection second; delta-oriented

prioritization combined with the configuration in similarity-based product priori-

tization using weight factor. In the first approach, the author focused on solution

space artifacts rather on the problem space i.e. selection of features. Architecture

model was used as an approach based on solution space. Products prioritized by

using similarity approach whereas similarity in proposed techniques calculated by

the deltas. Deltas were calculated based on dissimilarity using hamming distance.

On evaluation, proposed approach outperformed the random order, default or-

der of sampling algorithm, and achieved 90.7% APFD value. APFD of combined

approach was 90.5%.

Al-Hajjaji et al., 2017 In this approach, clustering technique is used. Al-

Hajjaji et al. used feature coverage criterion for prioritization with clustering [33].

Contrary to all the previous approaches, they proposed feature coverage criterion

but with clusters. The products that have similar features group into clusters to

reduce the testing effort and improves the effectiveness. Products were a clus-

ter (k-means algorithm) into subsets such that each set shares common set of

properties i.e. similar products that share a common set of features were cluster

in one set. After that, products in clusters are prioritized using similarity-based

approach. Proposed approach work slightly better than random order but when

compared with heuristic similarity based prioritization Al-Hajjaji et al. which

Literature Review 19

gives slightly worse results [33]. AFPD value of cluster-based prioritization de-

pends on the number of clusters. Increasing in a number of clusters decreases the

APFD value. Average results showed that proposed approach did not perform

better than current approaches. However, it worked better than random orders.

2.2 Prioritization Criterion based on Feature

In the following section two types of feature is considered. In one criterion, im-

portance or the priority of individual feature is taken into account based on some

goal. In other criterion, frequency of the feature in all the products is consid-

ered to prioritize the test cases. In both criteria, feature is considered for the

prioritization.

Ensan et al., 2011 Feature priority criterion used by Ensan et al. to prioritize

the test suite [34]. They introduced an approach in which most desirable features

were extracted to reduce the size of feature model. The goal of their study was, to

accomplish the higher error coverage by testing less number of test cases. Criterion

is based on the assumption that the feature, which is important with the stake-

holder’s perspective, has a higher chance to appear in more products. To achieve

a goal, size of the feature model was reduced by selecting important feature from

the model that was based on the goals, described by the stakeholders. Features

that cover important goals were selected and remaining features were removed

from the model. For prioritizing the test cases, goals of stakeholders ranked ac-

cording to the weight of goal (stakeholder’s point of view). The highest rank goal

was the most important goal to meet. Features that is used to meet the highest

ranked goal also ranked high. After that, test cases were ranked as; a test case

that covered the collection of important features was ranked high. However, the

proposed criterion only cover the feature complexity.

Literature Review 20

Sánchez et al., 2014 Another feature criterion based on the frequency of the

feature, proposed by the Sánchez et al. depends on the reusability of products

names as Commonality (Comm) [20]. Frequency of features are calculated from

the test suite and assigns highest priority to those test cases that contains the

highest priority features (as they use repeatedly in multiple products) because

they cover the more portion of products. It represents the percentage of the

feature that is present in the test suite and give a chance to the test case that

contain highly reused feature to test first because it cover the more part of the

product. In the first experiment 74.9% of APFD is achieved and in the second

experiment 55% is achieved.

2.3 Prioritization Criteria based on Feature Cou-

pling

As discussed before, Sánchez et al. proposed five prioritization criteria based

on the feature model metrics [20]. In this section, three of them are discussed,

based on feature coupling criteria. Their approach is different with all the previous

approaches, none of them consider the coupling complexity of the feature. The goal

of their work was to increase the early fault detection rate. Hence, three criteria

measure the complexity of the products named as Cross Tree Constraint Ratio

(CTCR), Coefficient of Connectivity Density (CoC) and Variability Coverage and

Cyclomatic Complexity (VC&CC). As it was assumed that products that are more

complex are likely to be more error-prone, therefore, they were given higher priority

to test first. They have performed two experiments, first is with the random order

of test suite and second, with the 2-wise interaction coverage.

Sánchez et al., 2014 CTCR criterion calculates the ratio of features with

constraints. CTCR of each test caseis calculated by dividing the number of features

that involves with constraints to the total number of features involve in the test

case. Test case with highest CTCR is the most complex and assigns the highest

Literature Review 21

order in the list. Upon two experiments, first experiment of CTCR obtains 84.5%

and second experiment achieves 83.2% of APFD.

CoC criterion represents the connectivity of features in the test case, it calculates

the edges and constraints of the test case. Total number of edges in the test case

is considered that is the relation between parent and child, and divided with the

total number of features of the test case. Test case with highest CoC is the most

complex test case. Evaluation results achieve 90.6% and 88% APFD on first and

second experiments respectively.

VC&CC is the combination of two feature model metrics, VC and CC. VC provides

the information about the variation points of the test case that represent different

variants to create the new product. VC is the optional features and all non-

leaf features whereas CC is the number of cycles that create in the test case.

As features are represented by the tree-like structure that is feature model so

cycles are calculated as the number of constraints in the test cases. The highest

value of VC&CC represents the most complex test case and effective in revealing

faults therefore assigned highest priority in the list. SPLAR tool was used to

analysis of feature model. 96.5% and 90.7% APFD is achieved with first and

second experiments respectively. The best APFD average value was achieved by

the VC&CC metric followed by CoC.

2.4 Analysis and Comparison

All of the techniques defined above prioritized the test cases based on the par-

ticular criteria by using different measuring instruments. List of test cases are

prioritized using the porposed criterion and for evaluating their criteria, they have

used different measures. Some of them used fault analysis and few of them used

coverage analysis, as mentioned in table 2.1.

From the table 2.1, we observe that highest APFD, that is 96.5% is achieved by the

feature coupling criterion named as VC&CC proposed by Sánchez et al. [20], in

Literature Review 22

which they used metrics of the feature model as a measuring instrument. Second

highest is achieved by the feature coverage criterion proposed by Al-Hajjaji et

al. [33] that is 90.7%. Al-Hajjaji et al. criterion was based on the coverage of

the features in which measuring instrument was the similarity metrics among the

features of test cases.

Literature Review 23

Table 2.1: Comparison of Techniques Based on Prioritization Criteria

Author Prioritization Measuring Feature Feature Feature APFD

Criteria Instrument Complexity Coupling Coverage

Complexity

Ensan

et

al.[34]

Feature prior-

ity

Features

Weight

No No No -

Devroey

et al.

[27]

Feature cover-

age

Probability

Measure

No No Yes -

Henard

et al.

[28]

Feature t-wise

coverage

Similarity

Measure

No No Yes -

Al-

Hajjaji

et al.

[29]

Feature cover-

age

Similarity

Measure

No No Yes 81%

Wang

et

al.[5]

Feature pair-

wise coverage

GA,

RS,(1+1)EA

and AVM

No No Yes -

Sanchez

et

al.[20]

Feature cou-

pling

FM Met-

rics

No Yes No 90.6%

Feature cou-

pling

FM Met-

rics

No Yes No 84.5%

Feature cou-

pling

FM Met-

rics

No Yes No 96.5%

Feature fre-

quency

FM Met-

rics

No No No 74.9%

Feature cover-

age

Similarity

Measure

No No Yes 87.4%

Al-

Hajjaji

et al.

[32]

Feature cover-

age

Similarity

Measure

No No Yes 90.7%

Al-

Hajjaji

et al.

[35]

Feature cover-

age

Similarity

Measure

No No Yes 68%

Literature Review 24

Whereas, other techniques that used feature coverage as a criterion does not

achieve high APFD than Al-Hajjaji et al.[32]. Although, all the techniques used

different case studies and they cannot be compared with each other. Subsequently,

we can compare those techniques that used the same case studies. Sánchez et

al.[20] proposed five criterion from which one is based on the feature coverage cri-

terion, one is based on feature complexity and others are based on feature coupling

criteria.

We can compare the criteria proposed by Sánchez et al.[20] as they are based on

the same case studies. 15 test suites were used with 100 to 500 products. Rate

of fault detection of test suites based on the five criteria are calculated. From

their criteria, Feature coverage criterion achieved the lowest value of APFD that

is 74.9% (average). It portrays that the criterion is not good enough as the random

order of the test suite obtained the better rate of fault detection than this criterion

that is 77.4% on the same case studies. So we can say that the criterion based on

only the individual feature is not good enough in terms of fault detection. Feature

coupling complexity (CTCR) criterion achieved 84.5% of APFD, feature coverage

criterion achieved 87.4%, other feature coupling complexity criteria (CoC) and

(VC&CC) achieved 90.6% and 96.5% respectively. CoC and VC&CC based on the

complexity of the features and achieved the highest fault detection rate, whereas

third complexity based criterion did not get the better results than the coverage

criterion. Coverage criterion detected all the faults by using 45% of the test suite

but coverage criterion does not consider the complexity of the test case and it

did not achieve the APFD better than the feature coupling criterion. So the best

value is achieved by the VC&CC and detected all the faults by using only 15% of

the test suite that is, only 75 out of 500 test cases are used to detect all the faults.

Therefore, we can conclude that feature coupling complexity is the best criterion

among them all.

Literature Review 25

2.4.1 Gap Analysis

All the proposed techniques discussed in literature review have developed to in-

crease the rate of fault detection by prioritizing the test cases. Many prioritization

techniques based on the coverage criterion in which products are prioritized based

on the similarity or the dissimilarity of their features. If two products are less sim-

ilar with respect to their features, they consider for prioritization order. However,

these techniques do not consider the complexity of product itself and from the

comparison of APFD it is concluded that coverage based criterion did not achieve

the better APFD. Few techniques consider optimization and search based algo-

rithm for prioritization which is randomized and does not guarantee that next time

generated prioritization list will follow the same order and same time. Remaining

techniques as shown in table 2.1 did not perform evaluation as their APFD values

are not given. so, we cannot say how these techniques perform in terms of fault

detection.

From the given table we are able to perceive that APFD of feature coupling cri-

terion proposed by Sánchez et al.[20] is better than other techniques in terms of

fault detection rate, among the criterion which consider the complexity of features

names as VC&CC is better than the other feature coupling criteria. while, they

partially consider the product’s complexity. They consider the product’s complex-

ity measure in terms of features and achieved 96.5% fault detection rate but they

did not focus on product’s complexity completely.

Chapter 3

Proposed Approach

In the previous chapter, literature survey is conducted from which we came to know

that many techniques used feature coverage criterion for prioritization but when

compared with other prioritization criteria, the highest APFD value is achieved

by the metric that use the feature coupling complexity. Therefore, we conclude

that feature coupling complexity is an important factor for measuring the com-

plexity of the products in order to find a prioritized set of products. Nevertheless,

only feature coupling complexity is considered separately and feature’s individual

complexity is being ignored. Two techniques considered the individual feature as

a factor but according to our knowledge, only one technique considered the fea-

ture priority for prioritizing the test cases. They disregard the feature coupling

complexity. Feature complexity is also an important factor that can be considered

to determine the product’s complexity. To overcome the gaps in the existing tech-

niques, we have proposed new criterion that considers both types of complexities,

discussed in this chapter.

This chapter presents our proposed approach of prioritization criterion for the

software product lines. The proposed approach is demonstrated with an example

for better understanding. In the first part of this chapter, the algorithm of pro-

posed approach and the context diagram is presented. The second part holds the

proposed criterion and the last part contains the example of proposed criterion.

26

Proposed Solution 27

3.1 Proposed Prioritization Algorithm

In proposed prioritization criterion, test cases will be prioritized based on the

complexities that will be obtained from the two factors.

1. Feature complexity

2. Feature coupling complexity

For feature complexity, use case descriptions will be used. From the use case de-

scriptions, complexity of all the features that are part of FM will be computed with

the help of the use case metrics. Once the complexity of features are computed, we

will find the feature complexity of a test case. As, a test case may contain multiple

features, so for each feature that is the part of test case, feature’s complexity will

combined. Similarly, feature complexity of test suite will be calculated.

For the second factor, feature coupling complexity, we will use the metric from

the existing technique proposed in [20]. They measure the complexity of test

case that is based on the feature model metrics. For each test case complexity,

variation points and cyclomatic complexity will be calculated from the formula

3.5. Variation point is the feature that provide different variation in the FM to

create product. All the non leaf features and the optional features in the product

are the variation points.Whereas, cyclomatic complexity is the number of cycles

in the product, which can be computed by counting the number of constraints in

the product.

After measuring the feature complexity and feature coupling complexity,both com-

plexities will be combined in order to get the Test Case Complexity (TCC). For

combining these two factors, we have introduced α as a weighting factor. This fac-

tor adjust the weights of both complexities, FC and FCC. We will perform some

experiments in order to know which value of α factor give more importance than

the other. For this, we use the value of α from 0-1 and get different number of the

test suite. Each test suite than prioritized according to the complexities. After

that, APFD will be calculated for each test suite. The test suite with the highest

Proposed Solution 28

APFD value provides information about the importance of α values which helps

us to find how much weight to assign the FC and FCC.

The context diagram of proposed approach is given in the figure 3.1 and the

algorithm of proposed approach is given in Algorithm 1, 2 and 3. Algorithm 1 is

for calculating the feature complexity that is the first part of proposed approach,

algorithm 2 is for calculating the feature coupling complexity and algorithm 3 is

for combining both factors to measure the test case complexity.

The running time for calculating the feature complexity of proposed criterion is

constant as the time complexity is based on size of the input. Size of input in our

algorithm is the number of statements that is, the number of actor actions and

the number of system actions. These statements are constant and independent to

the size of input. Therefore, the time complexity is constant, that is, O(1) as it

requires same amount of time to execute the statement regardless with the input

size.

Proposed Solution 29

asfbsajfbjfhsjdhfjdhfjsdhfjsdhfjdhf

a asfbsajfbjfhsjdhfjdhfjsdhfjsdhfjdhf

Figure 3.1: An Illustration of Proposed Solution.

asfbsajfbjfhsjdhfjdhfjsdhfjsdhfjdhf

Proposed Solution 30

Algorithm 1 Calculating Feature Complexity

Require:

FM:{ fi, i = 1, ...n } . Feature Model

T: { tj, j = 1, ...m } . Test Suite

tj:{ fk, k = 1, ...o } . Test case

UC: { UCl, l = 1, ...p } . Use Case

Ensure:

FCT . Feature complexity of test suite

Declaration

FCf = 0 . FC of features in FM

FCtj = 0 . Feature complexity of t

UCl: { UCm,m = 1, ...q } . UC lines

NOAS = 0 . Number of actor actions steps in UC

NOUS = 0 . Number of use case action steps in UC

NOSS = 0 . Number of system action steps in UC

NOCS = 0 . Number of conditional steps in UC

NOE = 0 . Number of exceptions in UC

NOS = 0 . Number of steps in UC

CC = 0 . Cyclomatic complexity of UC

Max = 0 . Maximum value of FC

1: procedure FC(T, FM,UC)

2: for all fi in FM do . FC of FM features

3: for all UCl in UC do

4: if UCm1 == fi then

5: break

6: for all UCl in UCm do

7: if UCl = actor action then

8: NOASfi = +1

9: else if UCl = system action then

10: NOSSfi = +1

Proposed Solution 31

11: else if UCl = use case action then

12: NOUSfi = +1

13: else if UCl = if condition then

14: NOCSfi = +1

15: else if UCl = exception then

16: for all UCl in exception do

17: NOEfi = +1

18: end for

19: end if

20: end for

21: NOSfi = NOASfi +NOUSfi +NOSSfi

22: CCfi = NOEfi +NOCfi + 1

23: FCfi = NOSfi + CCfi

24: else

25: FCfi = 0

26: end if

27: end for

28: end for

29: Max = maximum of FCfi

30: for all tj in T do . FC of test suite

31: for all fk in tj do . FC of test case

32: FCtj = +FCfk

33: end for

34: FCtj =
FCtj

Max

35: FCT [tj] = FCtj

36: end for

37: return FCT

38: end procedure

asfbsajfbjfhsjdhfjdhfjsdhfjsdhfjdhf

Proposed Solution 32

Algorithm 2 Calculating Feature Coupling Complexity

Require:

FM: { fi, i = 1, ...n, Ch, h = 1, ...l } . Feature Model

T: { tj, j = 1, ...m } . Test Suite

tj: { fk, k = 1, ...o } . Test case

Ensure:

FCCT . Feature coupling complexity of T

Declaration

V C ′ = 0 . variability coverage of FM

CC ′ = 0 . cyclomatic complexity of FM

V Ctj = 0 . variability coverage of t

CCtj = 0 . cyclomatic complexity of t

FCCtj = 0 . FCC of t

Max = 0 . Maximum FCC of FM

1: procedure FCC(T, FM)

2: for all fi in FM do . VC and CC of FM

3: if fi is optional OR variation point then

4: V C ′ = +1

5: end if

6: end for

7: for all Ch in FM do

8: CC ′ = +1

9: end for

10: Max =
√

(V C ′)2 + (CC ′)2

11: for all tj in T do . VC and CC of test case

12: for all fk in tj do

13: if fk is optional OR variation point then

14: V Ctj = +1

15: end if

Proposed Solution 33

16: if fk has Ch then

17: if Ch == Require then

18: if fk AND fk+1 is in tj then

19: CCtj = +1

20: end if

21: else if Ch == Exclude then

22: if fk+1 is not in tj then

23: CCtj = +1

24: end if

25: end if

26: end if

27: end for

28: end for

29: for all tj in T do . FCC of test suite

30: FCCtj =

√
(V Ctj)

2+(CCtj)
2

Max

31: FCCT [tj] = FCCtj

32: end for

33: return FCCT

34: end procedure

asfbsajfbjfhsjdhfjdhfjsdhfjsdhfjdhf

Proposed Solution 34

Algorithm 3 Combining Feature Complexity and Feature Coupling
Complexity

Require:

T: { ti, i = 1, ...n } . Test Suite

FC: { FCti , ti = 1, ...n } . Feature complexity of T

FCC: { FCCti , ti = 1, ...n } . Feature coupling complexity of T

Ensure:

PrT: . Prioritized test suite

Declaration

TcC = φ . Test case complexity

α = 0 . weighting factor

1: procedure TCC(T, FC, FCC)

2: while α ≤ 10 do

3: for all ti in T do

4: TCC[ti] = α
10
∗ FCti + (1− α

10
) ∗ FCCti

5: end for

6: TcC[ti] = sortTcC[ti]

7: prT[α] = TcC[ti]

8: α + +

9: end while

10: return PrT

11: end procedure

3.2 Proposed Criterion for Product Prioritiza-

tion

The steps involved in criterion to achieve the prioritized set of test suite are given

below:

1. Calculate feature complexity of test suite

Proposed Solution 35

2. Calculate feature coupling complexity of test suite

3. Combine feature and feature coupling complxities

The first step of proposed criterion is to measure the feature complexity by us-

ing use case metrics which is then combined with the second step of proposed

approach, that is, feature coupling complexity. In the third and the last step,

both complexities are combined together with the help of α factor that adjust

the weights of both factors to compute the product or the test case complexity.

Test cases are prioritized based on the complexities. Test case with the highest

complexity assigns the top priority in ordering list. The proposed approach is il-

lustrated in the figure 3.1 and the detailed steps of proposed criterion are discussed

below:

3.2.1 Feature Complexity

As Product Lines are precise in terms of features. Products in product lines are

generated by the combination of features. In product lines, features are used to

model the variability whereas, outside the product line community, use cases dia-

gram is also extensively used to model the variability. The product line community

also discusses similarities between features and use cases [36]. Use cases are use to

mapped into features of feature model [37–39], which means features in the feature

model are derived from the use case diagrams. Consequently, we use the use case

description metrics for measuring the complexity of features.

Use Case Model Use case is first introduced by Ivar Jacobson in 1990s which

have become an essential part of functional requirements modeling [40]. It turns

out to be the source for the initial design of a system and for requirements docu-

mentation. Use case model consists of two parts, the use case diagram, and the use

case descriptions. Diagram presents an overview of actors and use cases in which

list of actions or tasks describe the interaction between actor and system to accom-

plish a goal. Whereas the use case descriptions explain the details of requirements

Proposed Solution 36

in steps using the natural language which helps to understand the requirement

document easily, even to non technical person [41]. There is no standard template

for use case descriptions, as Ivar Jacobson did not introduce standard template

with use case diagram. There exist several ways to write the descriptions of the

use case in natural language, commonly used templates are given below:

1. Cockburn template, initially proposed in 1997 which is later reviewed in 2001

[42] . Most significant elements are given below:

(a) Name, scope, level and visibility

(b) Preconditions

(c) Trigger

(d) Minimal and success guarantees

(e) Main success scenario

(f) Extensions

2. Rational Unified Process (RUP) template propsoed by Kruchten [43]. Most

significant elements of RUP template are given below:

(a) Name

(b) Pre and post conditions

(c) Basic flow and Alternative flow

(d) Extension points

3. Durán template [44]. Most significant elements of Durán et al. template are

given below:

(a) Name

(b) Description

(c) Pre and post conditions

(d) Ordinary Sequence

(e) Exceptions

Proposed Solution 37

Use cases are primarily used as textual specifications of functional requirements.

Consequently, they can be considered as partial requirement of the system to

be built for estimation purposes [45]. Use case metrics make possible an early

estimation of the cost, development effort, implementation time and complexity

of the system under development. Various software metrics have been proposed for

analysis purpose but cannot be used in earlier stages of the development process.

However, use case metrics is one of the metrics that can be used in the early stages

of development process for analysis purpose [46].

Use Case Metrics Use case metrics defect proneness indicators. Durán et al.

described some heuristics for use case metrics [47]. According to these heuristics,

some use case metrics are the indicators of defect proneness. These metrics are

also empirically evaluated by Genro et al. in [48]. We are using some metrics that

used by these authors for measuring the complexity of feature defined below:

NOAS: A number of actor action steps of the use case.

NOUS: A number of use case action steps of the use case.(inclusion or extension).

NOSS: A number of system action steps of the use case.

NOCS: A number of conditional steps of the use case.

NOE: A number of exceptions of the use case.

NOS: A number of steps of the use case. NOS = (NOAS +NOUS +NOSS)

CC: Cyclomatic complexity of the use case.CC = (NOCS +NOE + 1)

Durán’s template is used in our approach and the above metrics are used to mea-

sure the complexity of the use case that will be the feature complexity.

Use case descriptions are considered for all the features exist in the FM. Two

types of features exist in FM, abstract and concrete. Concrete features can be

derived from the functional requirement and non-functional requirement. There is

Proposed Solution 38

no use case description for abstract features, only concrete feature with functional

requirement contains use case description. Abstract features are features used

to construct the FM, though; these features do not have any influence on the

implementation level, as selecting or removing these features from the products

makes no difference [49]. Use cases are developed only for functional requirements

so features with non-functional requirements and abstract are being ignored.

Feature complexity is calculated for all the concrete features and 0 value is assigned

to all non-functional and abstract features. Listed below steps are involved in

measuring the feature complexity.

1. Feature complexity of all features of FM

2. Feature complexity of a test case

3. Normalize the feature complexity of test case

Feature complexity of all the features present in FM will be computed with the

equation 3.1.

FCi(uc, FM) =
∑

(NOSi, CCi) (3.1)

FC is the Feature Complexity of feature i present in the FM which takes use case

description uc and feature model FM as an input and compute the Number of steps

NOS and Cyclomatic Complexity CC of feature i and returns the complexity of

feature i. where,

NOS = NOAS +NOUS +NOSS

and

CC = NOCS +NOE + 1

As the product is the combination of features, thus for all features present in the

product, FC is combined to calculate the FC of the product. Once complexity

of all the features of FM is computed, FC of a test case is computed by simple

Proposed Solution 39

addition of feature complexities that are present in the test case. FC of each test

case is computed with the equation 3.2 where n is the number of features present

in the test case and t is the test case.

FCt(FC, t) =
n∑
i=1

FCi (3.2)

Equation 3.2 computes the feature complexity FC of test case t, which takes Feature

complexities FC of all the features of FM and Test case t as an input and compute

the summation of all the complexities of the features present in a test case from i

to n where n is the total number of features in a test case t.

After having FC of the test suite, third step is performed for normalization, so that

in later step it can be combined with feature coupling complexity. For normalizing

each test case FC is divided by the FC of FM. It will be the maximum value that

any product can achieve. For this, sum of all the feature complexity of FM is

taken as given in the equation 3.3, here m is the total number of features of FM.

FCFM(FM,FC) =
m∑
i=1

FCi (3.3)

Equation 3.3 computes the Feature Complexity FC of Feature Model FM, which

takes FM and FC of all the features as an input and returns the summation of all

feature complexities from i to m where m is the total number of features present

in FM.

Normalization is perform by dividing each test case value with the FCFM as given

in the following equation 3.4.

FCt(norm) =
FCt
FCFM

(3.4)

Equation 3.4 normalized the Feature Complexity FC of test case t, where FC of

test case t is divided with the FC of Feature Model FM.

Proposed Solution 40

3.2.2 Feature Coupling Complexity

Feature coupling complexity FCC is calculated as defined in existing approach

with the help of equation 3.5, based on FM metrics [20]. They proposed five

prioritization criteria; three of them are based on the complexity of test cases. As

more complex test case expected to be more error-prone, so assign the highest

priority in testing order. We have selected one of the metrics which is based on

the coupling complexity of features. Motivation for selecting this metric is the

promising results, as it achieve the highest fault detection rate. Metric is given

below:

V C&CCt(FM, t) =
√
V C2 + CC2 (3.5)

Equation 3.5 is used to calculate the Variability Coverage VC and Cyclomatic

Complexity CC of test case t, which takes test case t and Feature Model FM as

an input and compute the coupling complexity. Listed below steps are involved in

measuring feature coupling complexity:

1. Measuring variability coverage VC

2. Measuring cyclomatic complexity CC

3. Feature coupling complexity of a test case

4. Normalize the FCC value

Variability coverage of the test case is defined as the number of variation points.

Variation point of a test case is calculated from the FM, it is the feature that

provides an alternative for creating the product. So the VC of a test case is the

number of features that provide variants in FM and all optional features.

Cyclomatic complexity of test case is defined as the number of cycles generating

in the FM. However, FM is the tree-like structure hence cycles can be calculated

by the number of constraints that make the cycles in FM. So CC of the test case

is the number of constraints present in the test case. Both are combined with the

help of equation 3.5.

Proposed Solution 41

In the last step, each test case is normalized. Maximum value is calculated from

the FM. Similar to the FCC of a test case, FCC of FM is calculated that gives

the number of cycles and variation points which could be the maximum number

of variation and cycles present in the FM. Each FCC value of a test case is them

normalized with the following equation 3.6

FCCt(norm) =
V C&CCt
V C&CCFM

(3.6)

Equation 3.6 normalized the Feature Coupling Complexity FCC of test case t,

where FCC of test case t is divided with the FCC of Feature Model FM.

3.2.3 Combining Feature Complexity and Feature Cou-

pling Complexity

Final complexity of test case (TCC) is obtained by combining the FC and FCC

together. Both complexities combined with the α factor that adjust the weights

for each factor. An experiment is performed by assigning different weights to each

factor and calculate the test suite complexity. APFD is obtained for all the test

suite, from the higest APFD of test suite, we will be able to know the importance

of factors. Weights of α are defined in the listed table 3.1. We used given equation

3.7 for applying weights to each factor.TCC is the test case complexity, each test

case complexity is derived by multiplying the weight to its FC value and FCC

value. Similarly, all test cases complexities are calculated when α is 0, 0.1, 0.2

upto 1.

TCCt = α ∗ FCt + (1− α) ∗ FCCt (3.7)

When assigning 0 to α, means we assign zero importance to FC value and give all

the importance to FCC of the test case. Likewise, when we assign 1 to α means

giving all the importance to FC and no importance to FCC value. 0.5 value of α

means giving equal importance to each factor. By assigning different values for α,

Proposed Solution 42

Table 3.1: Weights(α) for Test Suite

Iteration FC (α) FCC (1− α)

1 0 1

2 0.1 0.9

3 0.2 0.8

4 0.3 0.7

5 0.4 0.6

6 0.5 0.5

7 0.6 0.4

8 0.7 0.3

9 0.8 0.2

10 0.9 0.1

11 1 0

we will be able to know the importance of each factor when APFD will be cal-

culated. Overall 11 sets of test suite complexities are generated. In order to get

the relative importance of each factor α is introduced. α is use to balance the

weights of both factors such that when one factor is increases then second factor

decreases. Our focus is on the relative weights of both factors instead of absolute

values of factors that is the reason we use α for one factor and (1− α) for second

factor On each set APFD is calculated in order to know which weights give the

better results. Experimental results will be discussed in detail in chapter 5.

3.3 Example of Proposed Approach

E-shop FM is selected as an example to explain the detail of proposed criterion

given in [20]. FM is given in figure 3.2.

Proposed Solution 43

Figure 3.2: Feature-Model-Example.

In the example figure 3.2, FM consist of ten features from which three are abstract

feature named as, ’E-shop’, ’Security’ and ’Payment’,whereas, ’High’ and ’Stan-

dard’ are the non-functional requirements. These features do not contain use case

descriptions. Remaining features have use case descriptions, so the first step is to

calculate the FC of all the features presented in the FM with the help of use case

metrics. For the simplicity, we only consider the Basic flow and Exception flow of

use case. Use case description of the feature ’Catalogue’ is shown in the figure 3.3.

Test Suite is generated from FM with the combination of all valid features listed

below in table 3.2:

Proposed Solution 44

Table 3.2: Test Suite

Test Case Test Cases

t1 E-Shop,Catalogue,Payment,Bank Transfer,Security,High

t2 E-Shop,Catalogue,Payment,Bank Transfer,Security,Standard

t3 E-Shop,Catalogue,Payment,Credit Card,Security,High

t4 E-Shop,Catalogue,Payment,Bank Transfer,Credit Card,

Security,High

t5 E-Shop,Catalogue,Payment,Bank Transfer,Security,High,Search

t6 E-Shop,Catalogue,Payment,Bank Transfer,Security,Search,

Standard

t7 E-Shop,Catalogue,Payment,Security,Standard,Public report,

Search,Bank Transfer

t8 E-Shop,Catalogue,Payment,Credit Card,Security,High,Search

t9 E-Shop,Catalogue,Payment,Bank Transfer,Credit Card,High,

Security,Search

Figure 3.3: Use Case Description.

FC is computed with the equation 3.1. Actor action are the steps performed by the

actor in the use case, in the ’Catalogue’ use case, actor is the customer, so actor

steps are 4 associated to step 1, 3, 5 and 6 of the basic flow. System action are the

Proposed Solution 45

steps performed by the system, here system actor action steps are 3, associated

to step 2, 4, and 6 of the basic flow. This use case does not include or extends

any other use case so use case step is 0. All the above actions are considered from

basic flow, because these steps are designed to achieve the goal. NOS is the sum

of all the action steps defined above that will be 7. Conditional step in the above

use case is 1 associated to step 5 in the basic flow, only one exception associated to

exception flow of step 4, so the CC will be 3. table 3.3 shows the outlined metrics

of the use case example.

Table 3.3: Use Case Metric Values for the Use Case of Figure 3.3

Metric Value Explanation

NOAS 4 There are 4 actor (customer) steps associated to Basic

Flow (step 1, 3, 5 and 6)

NOSS 3 There are 3 system steps (step 2, 4, 6)

NOUS 0 There is no include or extend

NOCS 1 There is 1 conditional step associated Basic Flow (step

5)

NOE 1 There is only 1 exception associated to step 4

NOS 7 NOAS + NOSS + NOUS = 4 + 3 + 0

CC 3 NOCS + NOE + 1 = 1 + 1 + 1

From the equation 3.1, we get the FC value:

FCi(uc, FM) =
∑

(NOSi, CCi)

FCcatalogue = 7 + 3 = 10

Similarly, all the feature’s complexity is calculated from the use case descriptions

which is listed in the table 3.4 below:

Proposed Solution 46

Table 3.4: Complexity of Features

Feature Complexity

Catalouge 10

Credit Card 13

Bank Transfer 13

Search 5

Public Report 7

Next step is to calculate the FC of test suite that contains nine test cases in

this example, given in the table 3.2. FC of each test case is computed from the

equation 3.2.

FCt(FC, t) =
∑n

i=1 FCi

For t1 FC is computed as:

FCt1 = FCE−Shop+FCCatalogue+FCPayment+FCBankTransfer+FCSecurity+FCHigh

As we have already discussed, for the non-functional and abstract type features,

we assign 0. So, for FCt1we get:

FCt1 = 0 + 10 + 0 + 13 + 0 + 0 = 23

Similarly, for all test cases from the test suite FC is computed. table 3.5 shows

the values for all the test cases.

Next step is to normalize the FC of test case by dividing by FCFM .

FCFM = FCE−Shop+FCCatalogue+FCSecurity+FCStandard+FCHigh+FCPayment+

FCCreditCard + FCBankTransfer + FCSearch + FCPublicReport

tfffffffffffext FCFM = 0 + 10 + 0 + 0 + 0 + 0 + 13 + 13 + 5 + 7 = 48

In the above scenario, the maximum value is 48 so all the test case FC is divided

by 48 to normalized the values as listed below in table 3.6:

Proposed Solution 47

Table 3.5: FC of Test Suite

Test Case No. FC of Test Case

t1 23

t2 23

t3 23

t4 36

t5 28

t6 28

t7 35

t8 28

t9 41

Table 3.6: Normalized FC of Test Suite

Test Case No. FC of Test Case

t1 0.479167

t2 0.479167

t3 0.479167

t4 0.75

t5 0.5834

t6 0.5834

t7 0.729167

t8 0.5834

t9 0.854167

The second step is to calculate the feature coupling complexity. The first test case

t1{E-Shop,Catalogue,Payment,Bank Transfer,Security,High} contains ’E-Shop’, ’Pay-

ment’ and ’Security’ as the variant features as these are the variation points. V C

of the product is the number of variation points and optional feature, hence, V C

of t1 is 3. Whereas, CC is the number of constraints in the product, so in t1 only

1 constraint is present, which is in between ’High’ and ’Public Report’ feature.

Proposed Solution 48

The constraint between these two feature is exclude constraint that means both

features cannot be appear in the same product and in P1 this condition is true,

hence, CC of t1 is 2. In the same way VC and CC of all the test cases is com-

puted. Following table 3.7 demonstrate the values of Variability Coverage V C,

Cyclomatic Complexity CC and Feature coupling complexity FCC value of the

test suite.

Table 3.7: VC and CC of Test Suite

Test Case VC CC

t1 1 + 0 + 1 + 0 + 1 + 0 1 (High excludes Public report)

t2 1 + 0 + 1 + 0 + 1 + 0 0

t3 1 + 0 + 1 + 0 + 1 + 0 1(Credit Card requires High) +

1 (High excludes Public report)

t4 1+0+1+0+0+1+0 1(Credit Card requires High) +

1 (High excludes Public report)

t5 1+0+1+0+1+0+1 1 (High excludes Public report)

t6 1+0+1+0+1+0+1 0

t7 1 + 0 + 1 + 0 + 1 +

0 + 1 + 1

1 (Public Report excludes High)

t8 1+0+1+0+1+0+1 1(Credit Card requires High) +

1 (High excludes Public report)

t9 1 + 0 + 1 + 0 + 0 +

1 + 0 + 1

1(Credit Card requires High) +

1 (High excludes Public report)

Next step is to apply the metric given in the formula 3.5. For t1 value of V C is 3

and CC is 1, both are picked in the metric as shown given below:

V C&CC(FM, t) =
√
V C2 + CC2

V C&CCt1 =
√

32 + 12 = 3.16227766

Test suite value of V C&CC is shown in the table 3.8 that represent the FCC

values of test suite.

Proposed Solution 49

Table 3.8: FCC of Test Suite

Test Case No. VC&CC FCC of Test Case

t1
√

32 + 12 3.16227766

t2
√

32 + 02 3

t3
√

32 + 22 3.605551275

t4
√

32 + 22 3.605551275

t5
√

42 + 12 4.123105626

t6
√

42 + 02 4

t7
√

52 + 12 5.099019514

t8
√

42 + 22 4.472135955

t9
√

42 + 22 4.472135955

For normalization, maximum VC and CC value is calculated from the FM. The

maximum variation points and cyclomatic complexity of FM is calculated by using

the same metric given in the formula 3.5. In FM figure 3.2 ’E-Shop’, ’Payment’,

’Security’, ’Search’ and ’Public Report’ are the variation points whereas, one ex-

clude constraint and one require constraint is present between ’High’ and ’Public

Report’ and ’Credit Card’ and ’High’ respectively. so, V C is 5 and CC is 2. It

is the maximum value of V C and CC that can be present in any product of this

FM. V C&CC of FM is listed in the table 3.9 below:

Table 3.9: FCC of Feature Model

FM VC CC VC&CC FCC of FM

FM 5 2
√

52 + 22 5.385164807

Normalized value of FCC is obtained by dividing each value of test case with the

maximum value that is achieved from the FM. For t1, we obtained 3.1622 and

5.3851 for FM. So for P1 we obtained 0.5872 value. Likewise, all the FCC of test

case’s value is normalized as shown in the table 3.10.

Proposed Solution 50

Table 3.10: Normalized FCC of Test Suite

Test Case No. FCC of Test Case

t1 0.58722025

t2 0.55708605

t3 0.6695341

t4 0.6695341

t5 0.7656415

t6 0.74278134

t7 0.9468642

t8 0.8304548

t9 0.8304548

The third and the last step of our approach is to combine the FC and FCC

by assigning different weights for α. For this we have introduced an α factor as

mentioned above. In the example 0.5 value is set to α which means we are giving

the equal importance to each factor. By using equation 3.7, we get the following

value for t1 test case.

TCCt = α ∗ FCt + (1− α) ∗ FCCt

TCCt1 = 0.5 ∗ 0.5609 + (1− 0.5) ∗ 0.587

TCCt1 = 0.57395

Similarly all test cases TCC value is calculated as shown in the table 3.11.

Similarly complexity of test suite is calculated by assigning different values of α.

After that, each test suite is prioritized according to their values. The above test

suite of weight 0.5 is prioritized as t9, t7, t8, t4, t5, t6, t3, t1, t2 as shown in the

table 3.12 with their TCC values.

Proposed Solution 51

Table 3.11: Test Suite Complexities

Test Case FC and FCC with α = 0.5 Complexity of

Test Case

t1 0.5 ∗ (0.479167) + 0.5(0.5872) 0.53318

t2 0.5 ∗ (0.479167) + 0.5(0.5570) 0.51808

t3 0.5 ∗ (0.479167) + 0.5(0.6695) 0.57433

t4 0.5 ∗ (0.75) + 0.5(0.6695) 0.70975

t5 0.5 ∗ (0.5834) + 0.5(0.7656) 0.6745

t6 0.5 ∗ (0.5834) + 0.5(0.7427) 0.66305

t7 0.5 ∗ (0.729167) + 0.5(0.9468) 0.8379835

t8 0.5 ∗ (0.5834) + 0.5(0.8304) 0.75665

t9 0.5 ∗ (0.854167) + 0.5(0.8304) 0.84228

Table 3.12: Prioritized Test Suite

Test Case Test Case Complexity (TCC)

t9 0.84228

t7 0.8379835

t8 0.75665

t4 0.70975

t5 0.6745

t6 0.66305

t3 0.57433

t1 0.53318

t2 0.51808

After implementation of proposed criterion, evaluation will be performed with the

different values of α to obtain the best test suite and with the existing technique.

APFD for each test suite of different weights will be calculated and comparison

will be performed.

Chapter 4

Implementation

This chapter comprises the implementation details of our proposed approach. For

implementation, we have used FeatureIDE that is an Eclipse-based framework

helps to implement the software product line (SPL) into an integrated develop-

ment environment [26]. We have used this tool for modeling of feature and their

configurations. Feature Models(FM) are taken from the software product lines

online tool (SPLOT) repository [25] and modeled in FeatureIDE tool where all

valid products are generated with the possible combinations that will be the test

suite.

4.1 Implementation Details

In this section, implementation of our prioritization criterion details is described.

Before implementing the proposed algorithm, we generate the test suite that con-

sists of test cases and each test case contains several features in it. For this purpose

we used FeatureIDE tool that automatically generates all the valid combinations

of features, that is a test case. Example of FM modeled in FeatureIDE as shown

in the following figure 4.1.

52

Implementation 53

Figure 4.1: FM in FeatureIDE.

FM is exported from the SPLOT repository in the SXFM format and imported in

the tool that automatically create the graphical view of FM as shown above in the

figure. Cross tree constraints are shown by the textual form that can be created

by the constraint editor in which constraint can be created or edited, constraint

editor is shown in the figure 4.2

Figure 4.2: Constraint Editor of FeatureIDE.

Implementation 54

Configurations from the FM is also created by the tool. It make sure that all the

possible configurations are valid. Configuration window is shown in the following

figure 4.3.

Figure 4.3: Configuration of FeatureIDE.

The FM created by the tool are stored in XML fromat. XML file of FM includes

the information of features that are present in the FM with their types either they

are abstract, concrete, mandatory or optional and types of constraint that are

present between features,’require’ or ’exclude’. Likewise, XML file of product or

test case contains all the features with tag either they are selected in the test case

or not.

Class diagram of implementation is given in figure 4.4.Whereas, details of imple-

mented classes and methods are discussed in the next section. Each class consists

of a number of methods that are used to implement the proposed algorithm.

4.1.1 Test Suite

TestSuite class is used to parse the XML files of FM and test cases in order to

extract the information that is needed. This class consists of multiple methods

such as: testcaseXML() In this method, we parse the XML file of each product

and extract all the features that are part of the test cases so that we have the set

of test cases with features. As already discussed above we had test cases with all

Implementation 55

Figure 4.4: Class Diagram of Proposed Algorithm.

features that contain tag with the information that the feature is the part of a

test case or not. So we have to extract only those features that are part of test

cases. After that, all the test cases with features are saved into a file of the test

suite. FMXML() Like testcaseXML(), this method also parse the XML file of

FM and all the features are saved into a file with the information that features are

mandatory, optional, alternative or of or type. In the same way, constraints are

also extracted with the details of features that are the part of constraint and the

type of constraints. reading() This method is created for reading an input file

from the folder, as test case file is read from the folder. writing() This method

is created for writing an output in files, like features complexities, test cases and

prioritization list. Reading and writing methods in this class is used by different

classes to write and read.

4.1.2 Feature Complexity

FeatureComplexity class is used to calculate the feature complexity of test suite.

This class use the .txt file of use case description that contains the description

Implementation 56

of features,.csv file of FM that contains the features of FM with the information

extracted from the FMXML() and .csv file of test suite that contains the test

cases obtained from the testcaseXML() as an input for calculating the feature

complexity. It gives .csv file of test suite with FC as an output. FC FMfeature(

) This method calculates the feature complexity of all the features that are the

part of FM. It uses the list of features that are present in the FM and calculate

complexity of all those features. If use case description is not present for any of the

feature, it assigns zero value to that feature. This method returns the complexity

of each feature of FM. FC TestCase() This method calculates the complexity

of each test case, that contains the set of features. FC FMfeature() stores the

complexity of each feature in the list, this method use that list and run the loop

for each test case of the test suite with the inner loop that runs for features of each

test case. Each feature complexity is taken from the list and combines by simple

addition in order to get the test cases complexities. List of test cases with their

complexities is collected from this method. Norm FC() This method normalizes

the complexities of test cases. Maximum value of the test case complexity is taken

from the list of test cases obtained from the FC TestCase() in order to normalize

the set of test case. Each value of test case complexity obtained from the FC

TestCase() is divided with the maximum value. Feature complexity of test suite

is obtained from this method which is saved in the file by using writing().

4.1.3 Feature Coupling Complexity

FeatureCouplingComplexity class is used to calculate the FCC of test suite. This

method take .csv file of FM and test suite as an input. In addition, provide

the .csv File of test suite with FCC. VC testCase() This method reads the

file of the test suite that contains the test cases with multiple features in it and

calculates variability coverage of each test case. Variability coverage is calculated

by considering each feature from the test case and checks the type of feature

from the FM file. If it is of type ’optional’,’alternative’ or ’or’ then VC variable

is incremented. CC testCase() This method reads the file of the test suite

Implementation 57

that contains the test cases with multiple features in it and calculates cyclomatic

complexity of each test case. CC is calculated by checking the constraint from the

FM file. As constraints present between two features so each feature is stored as

start feature and end feature. Loop is used to run for all the test cases and check

the constraint type as ’requires’ and ’excludes’. For ’requires’ constraint, if start

feature is present in the test case then end feature must also be present in the same

test case if this condition is met than incremented in the CC value. For ’excludes’

constraint, if start feature is present in the test case then the end feature must

not be present in the same test case, if this condition for ’excludes ’ constraint is

met then the CC value is incremented. Both VC and CC values are stored in the

list. VCnCC() This method gets the value of VC and CC from CC and VC lists

obtained from the VC testCase() and CC testCase() respectively. The formula

of VC&CC is applied to the values of each test case and obtained the list of test

case with feature coupling complexities. VC CC FM() This method calculates

the VC and CC for FM. VC is calculated as defined above in VC testCase() and

CC is calculated by counting the number of constraints present in the FM file. In

this method. type of constraints does not matter. For this, we only count the total

number of constraint that is present in the FM. FCC is computed by using the

same formula of VC&CC. Norm FCC() This method uses the list of VC and CC

obtained from the VCnCC() as an input to this method for the normalization.

Each test case FCC value is divided by the maximum value obtained from the

VC CC FM(). This method returns the values of FCC of the test suite and

stored it in a file by using writing().

4.1.4 Test Suite Prioritization

TestCaseProritization class is used to prioritize the test cases from the test suite.

First, it combines the FC and FCC values with the help of α factor used as a

weighting factor to adjust the weight of FC and FCC. FC and FCC values are

taken from the .csv file. The weighted average is calculated and sets of test suite

are obtained as an output of this method. The output is shown in the console as

Implementation 58

well as each test suite is stored in the .csv file. Weighted avg() This method

combines the FC and FCC values. It assigns the weights to each test cases of

the test suite. The first test suite is generated by assigning 0 value to FC and 1

value to FCC. Likewise, the weight of FC is incremented and FCC is decremented.

Total eleven test suites are generated with different complexities and stored in a

file by using writing(). prioritize() This method reads the .csv files of test suite

complexities by using reading() one by one that is generated by Weighted avg()

and prioritize each test suite according to the complexity of test cases. Highest

complexity assigns the first rank in the ordering list. All the prioritized test suite

is stored in .csv file. The output of prioritized test suites is shown in the figure

4.5.

Figure 4.5: Output of Prioritized Test Suites on Console.

Chapter 5

Results and Discussion

This chapter discusses the results of our experimentation performed on different

feature models of various sizes. Feature models are collected from the SPLOT

repository [25]. We generated all the valid configurations of the feature model

using the FeatureIDE tool [26]. These configurations are the products or the test

cases, which is the combinations of features, and it can be a large number of

products so we have restricted our experiments to 100 products. The selected test

suites for the prioritization include 100 test cases that are selected randomly and

it makes sure that the selected products in the test suite cover all the features from

the feature model. Test suites for all subject product lines are given in Appendix

C. Applying the proposed criterion to the test suite, prioritized test suites are

generated for each feature model by using the algorithms already discussed in

chapter 3.

To measure the effectiveness of our proposed criterion, we evaluated the capability

of criterion to detect the faults. For this purpose, faults are injected in the n-tuples

of features and they are randomly selected to be seeded with faults where n can be

1, 2, 3 features. Different studies show that these types of faults commonly come

in real tools [50] and [51]. Faults are considered to be detected by a test case if it

includes the feature.

59

Results and Discussion 60

We have performed two evaluations, first; comparison among the prioritized test

suites based on the different values of α to find on what values of α test suites

achieves the best fault detection rate in proposed criterion and second, the com-

parison between the proposed criterion with the existing criterion proposed by

Sánchez et al. [20]. For comparison, the existing Sánchez is implemented and

prioritized test suites are generated based on the existing criterion. The average

percentage of fault detection rate (APFD) metric is used to evaluate how quickly

faults are detected with the criteria.

5.1 Case Studies

We have selected three case studies for experiments

1. Feature model of E-Commerce

2. Feature model of Social Network

3. Feature model of Transportation Network

5.1.1 E-Commerce SPL

is an online shopping product line. The feature model of e-commerce is composed

of 24 features and 6 cross-tree constraints which comprises 704 total products. All

the generated products are related to online shopping with minor changes in terms

of features. FM contains 9 mandatory features, 8 optional, 5 with or relation and

2 alternative relations. There are 4 require cross-tree constraints and 2 exclude

cross-tree constraints. Feature model contains 15 concrete features from which 2

features are nonfunctional and the remaining 9 features are abstract features.

Results and Discussion 61

5.1.2 Social Network SPL

is a social networking application. The feature model of a social network composed

of 31 features and 3 requires cross-tree constraints which comprise 22222 total

products. FM contains 10 mandatory features, 14 optional and 7 with or relation.

23 features are concrete features and remaining features are abstract features.

5.1.3 Transport Network SPL

is a transportation network application. Products that are generated from this

FM are online transportation network. The feature model of transport network

composed 24 features with 5 requires cross-tree constraints which comprise 2720

total products. FM contains 7 mandatory features, 6 optional and 11 with or

relation. Feature model includes 18 concrete features and 6 abstract features.

FM of subject product line are given in Appendix A and test cases of these subject

lines that are selected for the research work are given in Appendix B. Summary of

case studies are illustrated in table 5.1 in which number of products, features, con-

crete features, abstract features and the number of faults injected in the product

line are depicted.

Table 5.1: Summary of Subject Product Lines.

Product Line Products Features Concrete Features Abstract Features Faults

E-Commerce 704 24 15 9 6

Social Network 22222 31 23 8 10

Transport Network 2720 24 18 6 10

Results and Discussion 62

5.2 Fault Injection

To compute the effectiveness of criteria faults are injected using the renowned

method by Mathur et al.to access the detection of faults of the test suite [52].

Faults are injected in the features of FM. We randomly select the features and

marked as a faulty feature. Faults are marked as detected by a test case if faulted

feature is present in the test case. For each fault, we make sure that at least one

test case must be in the test suite detecting it so that test suite detected 100% of

the faults. The technique of such fault seeding is common in [20, 32, 53] due to

not having access to the case studies that have real faults and test cases.

5.3 Evaluation Metric

To evaluate the effectiveness of the proposed criterion Average Percentage of Faults

Detected (APFD) metric is used [21, 23, 54, 55]. APFD is the standard metric for

evaluating the prioritization techniques that helps to determine how quickly faults

are detected by the prioritized test suite. Following formula is used o calculate the

APFD.

1− TF1 + TF2 +TFm
nm

+
1

2n

Where T is the test suite containing n test cases and F is the set of m faults

revealed by T . For ordering T ′, TFi is the position of the first test case that

reveals the ith fault. APFD value ranges from 0 to 1. Higher APFD value of a

prioritized test suite has faster fault detection rates than those with lower APFD

values.

Results and Discussion 63

5.3.1 Example

Considering the test suite of Social Network product line with α = 0.6 is given

below:

T = { t81, t76, t83, t96, t98, t100, t70, t71, t86, t24, t30, t91, t85, t92, t66, t72,

t87, t43, t88, t20, t36, t37, t78, t82, t80, t74, t50, t26, t99, t51, t55, t21, t47, t48,

t61, t97, t67, t68, t69, t94, t17, t32, t77, t79, t27, t31, t75, t22, t89, t93, t15, t46,

t42, t18, t44, t41, t62, t73, t29, t25, t28, t84, t56, t90, t16, t38, t64, t34, t35, t13,

t65, t12, t95, t33, t39, t49, t63, t40, t23, t58, t52, t57, t59, t19, t45, t10, t14, t11,

t54, t60, t53, t9, t7, t6, t4, t1, t5, t8, t2, t3 }

F = { message, group call, group message, audio message, comment, share, un-

friend, block, search by name, create post }

n = 100, m = 10

APFD = 1− 8 + 1 + 19 + 8 + 1 + 7 + 1 + 1 + 1 + 1

10 ∗ 100
+

1

2 ∗ 100

APFD = 1− 48

1000
+

1

200

APFD = 0.957

We performed two evaluations; first is among the weighting factors of the proposed

criterion in order to select the best value for α (weighting factor). APFD calculated

for all the ten test suites of each subject product line and selected the weighting

factor that perform best on APFD then second evaluation is performed that is

a comparison among the existing criterion. Similarly, APFD value of test suite

based on the existing criterion is calculated and compared it with the proposed

criterion.

Results and Discussion 64

The following section illustrates the graph representation and the tables of the

weighting factor for each subject product line. We selected the value of α (weight-

ing factor) that gives the best APFD.

5.4 Experiment 1. Evaluation of Proposed Cri-

terion Based on Different values of α

The first experiment is performed to obtain the test suite that attains the best

APFD value. For this, we conduct the experiment by assigning different values

for α as described in chapter 3.

5.4.1 Prioritized Test Suites Based on Proposed Criterion

Subject product lines are used to generate the prioritized test suites. Each FM

generates ten prioritized test suites. In order to avoid the bias results, we have

conducted our experiments five times on different test suites that contained differ-

ent test cases with different faulted features. Five test suites are selected randomly

with different faulted features. On each test suite, the experiment is performed

on all values of α in order to get the best APFD. After conducting all the experi-

ments, the average of all the APFD is taken that is given in the following section.

One of the prioritized lists of e-commerce, social network, and transport network

product lines are given in Appendix A. One of the prioritized lists based on the

best values of α for all the subject product lines that are selected for the second

experiment are given below:

Prioritized list for E-Commerce α = 0.5 { t81, t76, t83, t98, t100, t96, t70,

t71, t86, t91, t30, t24, t92, t85, t72, t87, t66, t43, t88, t82, t20, t36, t37, t78,

t80, t50, t99, t74,t26, t51, t97,t21, t47, t48, t61, t55, t67, t68, t69, t94, t32, t77,

t79,t17, t75, t31,t89, t27, t22,t93, t42, t41, t62, t46, t15, t18, t44, t73,t29, t84,

t25,t28, t90,t56, t64, t38, t34, t35, t16, t13, t65, t95, t39,t49, t12, t33,t40, t63,

Results and Discussion 65

t58, t23, t57, t59, t52, t19, t45, t54, t11, t10, t14, t60, t53,t9, t7, t6, t4, t5, t1, t8,

t2, t3}

APFD for E-commerce product line is given in the table 5.2 in which the column

depicts different test suite that are used for experiments and the last column

Final APFD depicts the average of APFD of all the test suits. The graphical

representation of average APFD of E-commerce case study is illustrated in the

figure 5.1.

Table 5.2: APFD for E-Commerce Product Line Based on Different Values of
α.

α T1

APFD

T2

APFD

T3

APFD

T4

APFD

T5

APFD

Final

APFD

0 98.60 96.33 99.50 95.67 99.17 97.85

0.1 98.60 95.33 99.50 96.50 99.00 97.79

0.2 98.60 96.67 99.50 96.50 99.00 98.05

0.3 98.60 97.17 99.50 96.50 99.00 98.15

0.4 99.00 97.67 99.50 96.83 99.17 98.43

0.5 99.00 97.67 99.50 96.67 99.17 98.40

0.6 99.00 97.67 99.50 97.33 99.17 98.53

0.7 99.00 97.50 99.50 97.33 99.17 98.50

0.8 99.00 97.33 99.50 95.83 99.17 98.17

0.9 99.00 97.17 99.50 95.67 99.17 98.10

1 98.60 96.83 99.33 94.50 99.17 97.69

In the first column T1 of table 5.2, product line of e-commerce achieved 98.6%

of APFD when we set the value of α = 0, 0.1, 0.2, 0.3 and 1. Whereas, 99% of

APFD is achieved when α = 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. Difference between the

values of APFD is due to the position of test case t83, it is located at 4th position

when 98.6% of APFD is achieved. Whereas, t83 is located at 3rd position when

99% of APFD is achieved. From the average of all test suite, we concluded that

on 0.6 value of α, the best APFD is achieved. So 0.6 value of α is selected for

second evaluation.

Results and Discussion 66

Figure 5.1: Graphical Representation of APFD for E-Commerce Product Line
Based on Different Values of α.

Prioritized list for Social Network α = 0.6 { t87, t88, t90, t89, t91, t92,

t82, t100, t71, t73, t83, t84, t86, t85, t72, t74, t75, t48, t40, t66, t49, t50, t52,

t41, t42, t99, t55, t57, t77, t67, t68, t51, t53, t54, t76, t24, t98, t97, t29, t56, t58,

t59, t25, t26, t30, t31, t33, t70, t79, t13, t43, t78, t69, t32, t34, t35, t61, t80, t81,

t60,t14,t15, t17,t62, t63,t94, t45,t37, t95,t96, t16,t18, t19,t44, t64,t27, t28,t36,

t46,t47, t38,t39, t65,t21, t93,t20, t22,t23, t10,t11, t12,t8, t6,t7, t4,t5, t2,t3, t1,t9}

Table 5.3: APFD for Social Network Product Line Based on Different Values
of α.

α T1

APFD

T2

APFD

T3

APFD

T4

APFD

T5

APFD

Final

APFD

0 94.80 97.90 98.50 99.30 96.83 97.47

0.1 95.60 97.70 98.50 99.30 97.67 97.75

0.2 95.30 97.30 98.30 99.30 97.67 97.57

0.3 95.10 97.30 98.10 99.10 97.67 97.45

0.4 95.30 97.70 98.30 99.10 97.67 97.61

0.5 95.20 97.70 98.50 99.10 97.83 97.67

0.6 95.70 97.70 98.50 99.10 98.33 97.87

0.7 95.30 97.50 98.30 99.10 98.00 97.64

0.8 95.50 97.50 98.50 99.10 98.17 97.75

0.9 95.70 97.50 98.50 99.10 98.17 97.79

1 94.40 97.50 99.10 99.10 97.50 97.52

Results and Discussion 67

Average APFD of all test suite achieved from the social network product line is

given in the table 5.3 and graphical representation of average APFD is shown in

the figure 5.2.

Figure 5.2: Graphical Representation of APFD for Social Network Product
Line.

In T1 of table 5.3 , the best APFD is achieved when the α value is set to o.6 and

o.9 that is 95.7%. Whereas, all the other values of α achieved less APFD. It is due

to the test cases t100, t97, t71 and t40. t40 and t97 vary from different test suites.

In some test suites t97 with the combination of t100 and t71, which detected all

the faults and in some test suite t40 comes with t100 and t71 that detected all

the faults. The position of test cases in α = 0.6 and α = 0.9 is different which

achieved the highest APFD. When α = 0.6, the position of t100, t71 and t40 is

7th, 8th, and 19th whereas the position of t100, t71 and t40 in α = 0.9 is 9th, 7th

and 17th; all the faults are detected until test case t40. Lowest APFD achieved

when α = 1, the position of t100, t71 and t40 is 13th, 7th and 19th. From the

average of APFD of all test suites, 0.6 value of α = is performed best. So, we have

0.6 value of α for the second evaluation.

Prioritized list for Transport Network α = 0.2 { t65, t67, t58, t66, t60,

t96, t25, t68, t97, t59, t62, t27, t99, t61, t64, t95, t26, t29, t63, t98, t28, t31, t100,

t30, t32, t69, t71, t77, t85, t79, t70, t73, t87, t21, t72, t75, t78, t81, t86, t89, t20,

t23, t90, t74, t80, t83, t22, t92, t82, t57, t76, t88, t24, t33, t84, t91, t94, t35, t93,

Results and Discussion 68

t34, t36, t9, t38, t44, t52, t15, t46, t54, t37, t40, t10, t12, t39, t42, t45, t48, t53,

t56, t11, t16, t47, t50, t55, t41, t17, t19, t13, t1, t49, t18, t43, t3, t14, t51, t2, t5,

t4, t7, t6, t8}

Table 5.4: APFD for Transport Network Product Line Based on Different
Values of α.

α T1

APFD

T2

APFD

T3

APFD

T4

APFD

T5

APFD

Final

APFD

0 97.80 98.90 96.30 96.83 91.67 96.30

0.1 97.80 99.10 96.67 97.67 93.50 96.95

0.2 98.20 99.10 96.20 97.67 93.50 96.93

0.3 97.70 99.10 96.20 97.67 93.17 96.77

0.4 97.20 99.30 96.30 97.67 93.50 96.79

0.5 97.00 99.30 96.30 97.83 93.33 96.75

0.6 97.00 99.30 96.10 98.33 94.17 96.98

0.7 97.00 99.30 96.10 98.00 94.17 96.91

0.8 96.10 99.30 96.10 98.17 94.50 96.83

0.9 96.10 99.20 96.11 98.33 94.17 96.78

1 93.60 99.20 96.00 97.50 91.50 95.56

Average APFD of all test suites achieved from the transport network product line

is given in the table 5.4 and graphical representation of average APFD of all test

suites is shown in the figure 5.3.

T1 of table 5.4 The minimum APFD is achieved when α is set to 1 that means

weight is applied only to the FC and FCC is being ignored. The best APFD is

achieved when the α value is set to o.2 that is 98.2%. Whereas, all the other values

of α achieved less APFD. It is due to the test cases t58 and t97. The position of

test cases in α = 0.1 are 3th and 6th, whereas in all other test suites they lie on

different positions but when we take the average of APFD of all test suites, 0.6

value of α achieved the best APFD as in previous. So, from this product line, α =

0.6 is selected as the best APFD and compared with the existing criterion in the

second evaluation.

Results and Discussion 69

Figure 5.3: Graphical Representation of APFD for Transport Network Prod-
uct Line Based on Different Values of α.

5.4.2 Comparison

We are able to know from experiment 1, on E-Commerce product line the best

APFD (88.5%) is achieved when more weight is assigned to FC and less to FCC,

that is, 0.6. whereas, when FC or FCC is taken individually, achieved APFD

is not good enough. On Social Network product line, the best APFD (97.97%)

is achieved when more weight is assigned to FC and less to FCC, similar to

previous case study, that is, 0.6. On Transport Network product line, the best

APFD (96.98%) is achieved when more weight is assigned to FC and less to FCC

that is, when α = 0.6.

We have concluded from experiment 1, when the only FC factor is applied to

the test suite, it does not perform well on APFD. Similarly, when FCC factor is

applied individually, achieved APFD is not good enough as well. The best APFD

is obtained when approximately equal weights are assigned for both factors, that

is, o.6 value of α. Therefore, the FC factor is an important factor that can enhance

the APFD of the test suite when used with FCC factor. Both factors are equally

important in calculating the complexity of the product.

Results and Discussion 70

5.5 Experiment 2. Evaluation of Proposed and

Existing Criteria

The second experiment is performed for the evaluation of proposed criterion with

the existing criterion. The best APFD that obtained from the experiment 1 is

compared with the APFD based on existing criterion.

5.5.1 Prioritized Test Suites Based on Existing and Pro-

posed Criteria

The prioritized test suites for E-Commerce, Social Network and Transport Network

product lines are given below in the table 5.5, 5.6 and 5.7 respectively.

Table 5.5: Priority List for E-Commerce Product Line

Existing Criterion based

Priority List

Proposed Criterion based

Priority List

t81, t98, t100, t83, t76, t91, t96,

t70, t71, t72, t86, t87, t92, t30, t43,

t82, t88, t99, t66, t85, t80, t97, t24,

t50, t78, t89, t20, t21, t32, t36, t37,

t47, t48, t51, t61, t67, t68, t69, t74,

t75, t77, t79, t94, t26, t31, t41, t42,

t62, t90, t55, t73, t84, t93, t17, t18,

t22, t27, t29, t44, t46, t56, t64, t95,

t25, t28, t34, t35, t38, t39, t49, t65,

t15, t13, t40, t12, t16, t33, t58, t63,

t57, t59, t60, t19, t23, t45, t54, t11,

t52, t10, t14, t53, t9, t7, t6, t4, t8,

t5, t1, t2, t3

t81, t76, t83, t98, t100, t96, t70,

t71, t86, t91, t30, t24, t92, t85, t72,

t87, t66, t43, t88, t82, t20, t36, t37,

t78, t80, t50, t99, t74, t26, t51, t97,

t21, t47, t48, t61, t55, t67, t68, t69,

t94, t32, t77, t79, t17, t75, t31, t89,

t27, t22, t93, t42, t41, t62, t46, t15,

t18, t44, t73, t29, t84, t25, t28, t90,

t56, t64, t38, t34, t35, t16, t13, t65,

t95, t39, t49, t12, t33, t40, t63, t58,

t23, t57, t59, t52, t19, t45, t54, t11,

t10, t14, t60, t53, t9, t7, t6, t4, t5,

t1, t8, t2, t3

Results and Discussion 71

Table 5.6: Priority List for Social Network Product Line

Existing Criterion based

Priority List

Proposed Criterion based

Priority List

t82, t87, t88, t90, t83, t84, t86, t89,

t91, t92, t85, t55, t57, t61, t79, t97,

t100, t56, t58, t59, t60, t62, t63,

t77, t78, t80, t81, t94, t95, t96, t40,

t41, t42, t48, t71, t73, t49, t50, t52,

t72, t74, t75, t76, t99, t51, t53, t54,

t93, t98, t29, t30, t31, t33, t37, t66,

t70, t27, t28, t32, t34, t35, t36, t38,

t39, t45, t67, t68, t69, t43, t44, t46,

t47, t24, t25, t26, t64, t65, t13, t14,

t15, t17, t21, t16, t18, t19, t20, t22,

t23, t10, t11, t12, t8, t4, t6, t7, t2,

t3, t5, t1, t9

t87, t88, t90, t89, t91, t92, t82,

t100, t71, t73, t83, t84, t86, t85,

t72, t74, t75, t48, t40, t66, t49, t50,

t52, t41, t42, t99, t55, t57, t77, t67,

t68, t51, t53, t54, t76, t24, t98, t97,

t29, t56, t58, t59, t25, t26, t30, t31,

t33, t70, t79, t13, t43, t78, t69, t32,

t34, t35, t61, t80, t81, t60, t14, t15,

t17, t62, t63, t94, t45, t37, t95, t96,

t16, t18, t19, t44, t64, t27, t28, t36,

t46, t47, t38, t39, t65, t21, t93, t20,

t22, t23, t10, t11, t12, t8, t6, t7, t4,

t5, t2, t3, t1, t9

Table 5.7: Priority List for Transport Network Product Line

Existing Criterion based

Priority List

Proposed Criterion based

Priority List

t65, t67, t66, t68, t96, t97, t99, t25,

t27, t58, t60, t95, t98, t100, t26,

t28, t29, t31, t59, t61, t62, t64, t30,

t32, t63, t69, t71, t77, t79, t85, t20,

t21, t23, t70, t72, t73, t75, t78, t80,

t81, t83, t86, t87, t89, t90, t92, t22,

t24, t57, t74, t76, t82, t84, t33, t35,

t88, t91, t93, t94, t34, t9, t15, t36,

t38, t44, t46, t52, t54, t10, t11, t12,

t65, t67, t58, t66, t60, t96, t25, t68,

t97, t59, t62, t27, t99, t61, t64, t95,

t26, t29, t63, t98, t28, t31, t100,

t30, t32, t69, t71, t77, t85, t79, t70,

t73, t87, t21, t72, t75, t78, t81, t86,

t89, t20, t23, t90, t74, t80, t83, t22,

t92, t82, t57, t76, t88, t24, t33, t84,

t91, t94, t35, t93, t34, t36, t9, t38,

t44, t52, t15, t46, t54, t37, t40, t10,

Results and Discussion 72

t16, t17, t19, t37, t39, t40, t42, t45,

t47, t48, t50, t53, t55, t56, t13, t14,

t18, t41, t43, t49, t51, t1, t3, t2, t4,

t5, t7, t6, t8

t12, t39, t42, t45, t48, t53, t56, t11,

t16, t47, t50, t55, t41, t17, t19, t13,

t1, t49, t18, t43, t3, t14, t51, t2, t5,

t4, t7, t6, t8

5.5.2 Comparison

Comparison of proposed and existing criteria for E-Commerce product line is illus-

trated in figure 5.4 as a graphical representation. Approximately 98% of APFD is

achieved by existing criterion whereas approximately 99% is achieved by the pro-

posed criterion, which proves that proposed criterion gives better fault detection

rate than existing criterion.

Figure 5.4: APFD Comparison of Existing and Proposed Criterion for E-
Commerce Subject Product Line.

The difference is minor that is 0.68% between the criteria. A minor difference is

due to the same prioritization list in which the only position of one test case is

different. Graph representation of the execution of one of the test suite’s test cases

and the percentage of detected faults are depicted in figure 5.5. From which we

concluded that the proposed criterion detected 100% of faults with the execution

of only 3 test cases only. While the existing criterion detected 100% of faults when

executing 4 test cases. It is due to the position of test case t83 and t100, which is

Results and Discussion 73

placed at 4th and 3rd position on existing test suite while on 3rd and 2nd position

of proposed test suite respectively.

Figure 5.5: Graphical Representation of Fault Detection of Test Cases for
E-Commerce Subject Product Line.

Social network product line comparison among existing and proposed criterion is

depicted as a graph in figure 5.6. 94.8% of APFD is achieved by existing criterion

whereas 95.7% is achieved by the proposed criterion, which proves that proposed

criterion gives better fault detection rate than existing criterion.

Figure 5.6: APFD Comparison of Existing and Proposed Criterion for Social
Network Subject Product Line.

The difference is 0.4% between the criteria. Graph representation of fault detection

of test cases of one test suite for social network product line is shown in figure

Results and Discussion 74

5.7 which concluded that the proposed criterion detected 90% of faults with the

execution of 8 test cases only while existing criterion detected 90% of faults when

executing 16 test cases. It is due to the position of test case t100 that is placed at

17th position in the existing criterion test suite whereas in the proposed criterion

test suite t100 is at 8th position. However, both test suites detected 100% of faults

with the execution of 19 test cases.

Figure 5.7: Graphical Representation of Fault Detection of Test Cases for
Social Network Subject Product Line.

In a transport network product line, the proposed criterion performs better than

the existing criterion. The difference is 0.4%. The graphical representation is

shown in figure 5.8.

Figure 5.8: APFD Comparison of Existing and Proposed Criterion for Trans-
port Network Subject Product Line.

Results and Discussion 75

Figure 5.8 shows that, initially both criteria performs similar and detected equal

percent of faults from the test suite, but with the execution of test case 2, proposed

criterion detected 100% of faults from the test suite and existing criterion detected

80% faults only till the execution of test case 4. With the execution of only two test

cases proposed criterion detected all the faults whereas, existing criterion needs

four test cases.

Graph representation of fault detection of test cases for transport network product

line is shown in figure 5.9. The fluctuation is due to the test cases t58, t96 and

t97. Test case t58 and t97 detected same faults but t58 appears on top of the

proposed prioritization list and t97 appears on top in existing prioritization list at

3rd and 5th position respectively. However, t97 in proposed prioritization list is at

9th position and t58 in existing prioritization list is at 11th position. While t96 in

proposed and existing criterion is at 6th and 5th position.

Figure 5.9: Graphical Representation of Fault Detection of Test Cases for
Transport Network Subject Product Line.

Comparison of APFD for proposed and existing prioritization criterion concluded

that the proposed criterion perform better than the other. Summary of aver-

age APFD of all test suite is shown in table 5.8 and graphical representation is

illustrated in figure 5.10.

Results and Discussion 76

Table 5.8: Comparison of APFD for Subject Product Lines.

Subject Product Line APFD for Existing Criterion APFD for Proposed Criterion

E-commerce 97.85% 98.53%

Social network 97.47% 97.87%

Transport network 96.30% 96.98%

Figure 5.10: Graphical Representation of APFD Comparison for Subject
Product Lines .

Existing criterion approach covers the coupling complexity of test cases and as-

sumed to cover the maximum fault detection rate. It considers only those test cases

that have constraints and high variability among the features. Since the proposed

criterion considers the complexity of individual feature with the feature variability

and constraints among the features so that test case complexity is cover entirely.

From the experiment results, it is concluded that with the combination of indi-

vidual and coupling complexity of feature, fault detection rate can be maximized

instead of using individual factor either feature complexity or feature coupling

complexity.

Chapter 6

Conclusion and Future Work

Software product line testing is one of the most laborious tasks due to a large

number of products variants derived from the product line. Testing of individual

product is not feasible and a tedious task. Test case prioritization is used to reduce

the time and cost of testing also to fulfill the requirement of the tester to find faults

as fast as possible within in the limited budget and time. We have conducted the

literature survey and concluded that different criteria are used to prioritize the

products of product lines. We have also proposed a new prioritization criterion

that finds the complexity of the products by using individual feature complexity

and feature coupling complexity and assign the highest priority to those products

that attain the highest complexity. To answer the research questions depicted

in chapter 1, we have performed two experiments and the results obtained to

positively answer the following questions:

RQ1. Does existing approaches consider the complexity of feature for prioritiza-

tion?

In existing criteria, mostly criteria depend on the coverage of features for the

prioritization of products. The goal of coverage criteria is to cover the maximum

part of the products but evaluation performed by Sánchez et al.[20] showed that

Average Percentage of Fault Detection (APFD) based on coverage criteria is not

good enough also the complexity of product is not considered in the coverage

77

Conclusion and Future Work 78

criterion. Another criterion used for prioritizing is the individual feature criterion

in which individual priority or the frequency of feature is considered, this criterion

covers the individual feature but did not focus on the complexity of the feature.

Evaluation results also showed that this type of criteria did not perform well on

the rate of fault detection. One more criterion, feature coupling complexity is

used to measure the complexity of the product and assigns the highest priority to

the most complex product. Prioritization based on feature coupling complexity

criterion performs well in terms of fault detection than the previous criteria but it

only considers the coupling complexity of features to find the product’s complexity.

However, none of the existing techniques consider the complexity of the feature

for prioritization.

RQ2. Can test case prioritization through feature complexity improves fault

detection rate?

The criterion proposed in this research work covers the complexity of the product

in order to prioritize the test suite. Product with maximum complexity has the

highest priority in the list as it is the most complex product, so it listed to the

top to test first. To answer this question, we perform an evaluation of our work

by comparing APFD of proposed criterion with the strongest existing criterion.

Three case studies of software product lines are used to calculate the complexities

of the test suite based on the proposed criterion as well as on the existing criterio.

The main objective of the proposed criterion is to increase the APFD of the test

suite. From the evaluation, we can say that the proposed criterion performs well

than the strongest existing criterion proposed by Sánchez et al.[20].

6.1 Future work

Existing criterion approach covers the coupling complexity of test cases and as-

sumed to cover the maximum fault detection rate. It considers only those test cases

that have constraints and high variability among the features. Since the proposed

criterion considers the complexity of individual feature with the feature variability

Conclusion and Future Work 79

and constraints among the features so that test case complexity is cover entirely.

From the experiment results, it is concluded that with the combination of indi-

vidual and coupling complexity of feature, fault detection rate can be maximized

instead of using individual factor either feature complexity or feature coupling

complexity.

Bibliography

[1] P. Clements and L. Northrop, Software product lines: practices and patterns.

Addison-Wesley Reading, 2002, vol. 3.

[2] M. Kim, S. Park, V. Sugumaran, and H. Yang, “Managing requirements

conflicts in software product lines: A goal and scenario based approach,”

Data & Knowledge Engineering, vol. 61, no. 3, pp. 417–432, 2007.

[3] J. D. McGregor, “Software product lines.” Journal of Object Technology,

vol. 3, no. 3, pp. 65–74, 2004.

[4] D. M. Weiss, P. C. Clements, K. Kang, and C. Krueger, “Software product line

hall of fame,” in Software Product Line Conference, 2006 10th International.

IEEE, 2006, pp. 237–237.

[5] S. Wang, A. Gotlieb, S. Ali, and M. Liaaen, “Automated selection of test

cases using feature model for product lines: An industrial case study.”

[6] Splc2-product line hall of fame,2004. [Online]. Available: www.sei.cmu.edu/

SPLC2/SPLC2 hof.html

[7] K. Pohl, G. Böckle, and F. J. van Der Linden, Software product line engineer-

ing: foundations, principles and techniques. Springer Science & Business

Media, 2005.

[8] J. C. Dager, “Cumminss experience in developing a software product line ar-

chitecture for real-time embedded diesel engine controls,” in Software Product

Lines. Springer, 2000, pp. 23–45.

80

www.sei.cmu.edu/SPLC2/SPLC2_hof.html�
www.sei.cmu.edu/SPLC2/SPLC2_hof.html�

Bibliography 81

[9] S. Apel, D. Batory, C. Kästner, and G. Saake, “A development process for

feature-oriented product lines,” in Feature-Oriented Software Product Lines.

Springer, 2013, pp. 17–44.

[10] K. Schmid, R. Rabiser, and P. Grünbacher, “A comparison of decision mod-

eling approaches in product lines,” in Proceedings of the 5th Workshop on

Variability Modeling of Software-Intensive Systems. ACM, 2011, pp. 119–

126.

[11] D. Batory, D. Benavides, and A. Ruiz-Cortes, “Automated analysis of feature

models: challenges ahead,” Communications of the ACM, vol. 49, no. 12, pp.

45–47, 2006.

[12] K. Czarnecki, U. W. Eisenecker, and K. Czarnecki, Generative programming:

methods, tools, and applications. Addison Wesley Reading, 2000, vol. 16.

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,

“Feature-oriented domain analysis (foda) feasibility study,” Carnegie-Mellon

Univ Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1990.

[14] K. Lee, K. C. Kang, and J. Lee, “Concepts and guidelines of feature mod-

eling for product line software engineering,” in International Conference on

Software Reuse. Springer, 2002, pp. 62–77.

[15] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of feature

models 20 years later: A literature review,” Information Systems, vol. 35,

no. 6, pp. 615–636, 2010.

[16] L. Baresi and M. Pezze, “An introduction to software testing,” Electronic

Notes in Theoretical Computer Science, vol. 148, no. 1, pp. 89–111, 2006.

[17] R. K. Chauhan and I. Singh, “Latest research and development on software

testing techniques and tools,” International Journal of Current Engineering

and Technology, vol. 4, no. 4, 2014.

[18] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon, “Automatic and

scalable t-wise test case generation strategies for software product lines,” in

Bibliography 82

International Conference on Software Testing. Springer Lecture Notes in

Computer Science (LNCS), 2010.

[19] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon, “Multi-

objective test generation for software product lines,” in Proceedings of the 17th

International Software Product Line Conference. ACM, 2013, pp. 62–71.

[20] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés, “A comparison of test case

prioritization criteria for software product lines,” in Software Testing, Verifi-

cation and Validation (ICST), 2014 IEEE Seventh International Conference

on. IEEE, 2014, pp. 41–50.

[21] S. Elbaum, A. G. Malishevsky, and G. Rothermel, Prioritizing test cases for

regression testing. ACM, 2000, vol. 25, no. 5.

[22] S. Yoo and M. Harman, “Regression testing minimization, selection and pri-

oritization: a survey,” Software Testing, Verification and Reliability, vol. 22,

no. 2, pp. 67–120, 2012.

[23] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization:

A family of empirical studies,” IEEE transactions on software engineering,

vol. 28, no. 2, pp. 159–182, 2002.

[24] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases

for regression testing,” IEEE Transactions on software engineering, vol. 27,

no. 10, pp. 929–948, 2001.

[25] M. Mendonca, M. Branco, and D. Cowan, “Splot: software product lines on-

line tools,” in Proceedings of the 24th ACM SIGTLAN conference companion

on Object oriented programming systems languages and applications. ACM,

2009, pp. 761–762.

[26] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich, “Fea-

tureide: An extensible framework for feature-oriented software development,”

Science of Computer Programming, vol. 79, pp. 70–85, 2014.

Bibliography 83

[27] X. Devroey, G. Perrouin, M. Cordy, P.-Y. Schobbens, A. Legay, and P. Hey-

mans, “Towards statistical prioritization for software product lines testing,”

in Proceedings of the Eighth International Workshop on Variability Modelling

of Software-Intensive Systems. ACM, 2014, p. 10.

[28] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and

Y. Le Traon, “Bypassing the combinatorial explosion: Using similarity to

generate and prioritize t-wise test configurations for software product lines,”

IEEE Transactions on Software Engineering, vol. 40, no. 7, pp. 650–670, 2014.

[29] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and G. Saake, “Similarity-

based prioritization in software product-line testing,” in Proceedings of the

18th International Software Product Line Conference-Volume 1. ACM, 2014,

pp. 197–206.

[30] S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, and M. Liaaen,

“Multi-objective test prioritization in software product line testing: an indus-

trial case study,” in Proceedings of the 18th International Software Product

Line Conference-Volume 1. ACM, 2014, pp. 32–41.

[31] M. Al-Hajjaji, T. Thüm, M. Lochau, J. Meinicke, and G. Saake, “Effective

product-line testing using similarity-based product prioritization,” Software

& Systems Modeling, pp. 1–23, 2016.

[32] M. Al-Hajjaji, S. Lity, R. Lachmann, T. Thüm, I. Schaefer, and G. Saake,

“Delta-oriented product prioritization for similarity-based product-line test-

ing,” in Proceedings of the 2nd International Workshop on Variability and

Complexity in Software Design. IEEE Press, 2017, pp. 34–40.

[33] M. Al-Hajjaji, J. Krüger, S. Schulze, T. Leich, and G. Saake, “Efficient

product-line testing using cluster-based product prioritization,” in Proceed-

ings of the 12th International Workshop on Automation of Software Testing.

IEEE Press, 2017, pp. 16–22.

Bibliography 84

[34] A. Ensan, E. Bagheri, M. Asadi, D. Gasevic, and Y. Biletskiy, “Goal-oriented

test case selection and prioritization for product line feature models,” in In-

formation Technology: New Generations (ITNG), 2011 Eighth International

Conference on. IEEE, 2011, pp. 291–298.

[35] M. Al-Hajjaji, J. Krüger, S. Schulze, T. Leich, and G. Saake, “Efficient

product-line testing using cluster-based product prioritization,” in Proceed-

ings of the 12th International Workshop on Automation of Software Testing.

IEEE Press, 2017, pp. 16–22.

[36] A. Braganca and R. J. Machado, “Automating mappings between use case

diagrams and feature models for software product lines,” in Software Product

Line Conference, 2007. SPLC 2007. 11th International. IEEE, 2007, pp.

3–12.

[37] M. L. Griss, “Implementing product-line features with component reuse,” in

International Conference on Software Reuse. Springer, 2000, pp. 137–152.

[38] M. Alférez, U. Kulesza, A. Sousa, J. P. Santos, A. Moreira, J. Araújo, and

V. Amaral, “A model-driven approach for software product lines requirements

engineering.” in SEKE, 2008, pp. 779–784.

[39] B. Wang, W. Zhang, H. Zhao, Z. Jin, and H. Mei, “A use case based approach

to feature models’ construction,” in Requirements Engineering Conference,

2009. RE’09. 17th IEEE International. IEEE, 2009, pp. 121–130.

[40] I. Jacobson, Object-oriented software engineering: a use case driven approach.

Pearson Education India, 1993.

[41] A. Bertolino and S. Gnesi, “Use case-based testing of product lines,” ACM

SIGSOFT Software Engineering Notes, vol. 28, no. 5, pp. 355–358, 2003.

[42] A. Cockburn, “Structuring use cases with goals,” Journal of Object-Oriented

Programming, vol. 10, no. 5, 1997.

[43] P. Kruchten, “The rational unified process–an introduction. addison-wesley

publishing company, 298p,” 2000.

Bibliography 85

[44] A. Durán, B. Bernárdez, M. Toro, R. Corchuelo, A. Ruiz, and J. Pérez,

“Expressing customer requirements using natural language requirements tem-

plates and patterns,” in IMACS/IEEE CSCC99 Proceedings, 1999.

[45] B. Bernárdez, A. Durán, and M. Genero, “Metrics for use cases: A survey

of current proposals,” in Metrics for software conceptual models. World

Scientific, 2005, pp. 59–98.

[46] D. Fonte, I. V. Boas, J. Azevedo, J. J. Peixoto, P. Faria, P. Silva, T. Sá,

U. Costa, D. da Cruz, and P. R. Henriques, “Modeling languages: metrics

and assessing tools,” arXiv preprint arXiv:1206.4477, 2012.

[47] A. Durán Toro, A. Ruiz Cortés, R. Corchuelo Gil, and M. Toro Bonilla,

“Supporting requirements verification using xslt,” 2002.

[48] M. Genero Bocco, A. Durán Toro, B. Bernárdez Jiménez et al., “Empirical

evaluation and review of a metrics-based approach for use case verification,”

Journal of Research and Practice in Information Technology, vol. 36, no. 4,

pp. 247–258, 2004.

[49] T. mThum, C. Kastner, S. Erdweg, and N. Siegmund, “Abstract features in

feature modeling,” in Software Product Line Conference (SPLC), 2011 15th

International. IEEE, 2011, pp. 191–200.

[50] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault interactions and

implications for software testing,” IEEE transactions on software engineering,

vol. 30, no. 6, pp. 418–421, 2004.

[51] D. R. Kuhn and M. J. Reilly, “An investigation of the applicability of design

of experiments to software testing,” in Software Engineering Workshop, 2002.

Proceedings. 27th Annual NASA Goddard/IEEE. IEEE, 2002, pp. 91–95.

[52] A. P. Mathur, Foundations of software testing, 2/e. Pearson Education India,

2013.

[53] X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and P. Heymans,

“Search-based similarity-driven behavioural spl testing,” in Proceedings of the

Bibliography 86

Tenth International Workshop on Variability Modelling of Software-intensive

Systems. ACM, 2016, pp. 89–96.

[54] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial interaction regres-

sion testing: A study of test case generation and prioritization,” in Software

Maintenance, 2007. ICSM 2007. IEEE International Conference on. IEEE,

2007, pp. 255–264.

[55] H. Srikanth, M. B. Cohen, and X. Qu, “Reducing field failures in system

configurable software: Cost-based prioritization,” in Software Reliability En-

gineering, 2009. ISSRE’09. 20th International Symposium on. IEEE, 2009,

pp. 61–70.

Appendix A

Prioritized Test Suite for Subject

Product Line

This section includes the prioritized list of test cases produced from the subject

product line based on proposed criterion. Each product line produce ten prioritized

list with different values of α as shown in the TABLE A.1, A.2 and A.3.

Table A.1: Prioritized Test Suite for E-Commerce Product Line Based on
Proposed Criterion

Value

for α

Prioritized Test Suite

0.1 t81, t98, t100, t83, t76, t96, t91, t70, t71, t86, t92, t72, t87, t30, t43,

t88, t82, t85, t66, t99, t80, t97, t24, t78, t50, t89, t20, t36, t37, t74,

t51, t21, t47, t48, t61, t67, t68, t69, t94, t32, t77, t79, t75, t26, t31,

t42, t41, t62, t55, t90, t93, t73, t84, t17, t27, t22, t46, t18, t44, t29,

t56, t64, t95, t25, t28, t15, t38, t34, t35, t65, t39, t49, t13, t40, t16,

t12, t33, t63, t58, t57, t59, t60, t23, t19, t45, t54, t11, t52, t10, t14,

t53, t9, t7, t6, t4, t5, t8, t1, t2, t3

87

Appendix A 88

0.2

t81, t98, t100, t83, t76, t96, t91, t70, t71, t86, t92, t72, t87, t30, t43, t85,

t88, t66, t82, t99, t24, t80, t97, t78, t50, t20, t36, t37, t89, t74, t51,t21,

t47, t48, t61, t67, t68,t69,t94, t32, t77, t79, t75, t26, t31, t55,t42, t41,

t62, t93, t73, t90,t17,t27, t84, t22, t46, t18, t44, t29, t56, t64, t15, t25,

t28, t95, t38,t34,t35, t65, t13, t39, t49,t16,t40, t12, t33, t63, t58, t57, t59,

t23, t60, t19, t45, t54, t11,t52, t10,t14, t53, t9, t7, t6, t4, t5, t8,t1, t2, t3

0.3

t81, t98, t100, t83,t76, t96, t91, t70, t71,t86, t92, t72, t87, t30, t85, t66,

t43, t88, t24,t82, t99, t80, t78,t50, t20, t36, t37, t97, t74, t51, t21, t47,

t48, t61,t89, t26, t67,t68, t69, t94, t32, t77, t79, t75, t55, t31, t42, t41,

t62,t17, t93,t27, t22, t73, t46, t90, t18, t44, t84, t29,t15, t56, t25,t28,t64,

t38, t34, t35, t65, t95, t13, t16, t39, t49, t40,t12, t33, t63, t58,t57, t59,

t23, t19, t45, t54, t52, t60, t11, t10, t14, t53,t9, t7,t6, t4, t5, t8, t1, t2, t3

0.4

t81, t76, t83, t98,t100, t96, t70, t71,t86, t91, t30, t92, t72, t87,t85, t24,

t66, t43 t88, t82, t78, t80, t20, t36,t37, t99, t50, t97, t74,t51, t26, t21,

t47,t48, t61, t67, t68, t69, t94,t32, t55, t89, t77,t79, t75, t31, t17,t27, t42,

t93, t22, t41, t62, t73,t46, t18, t44, t15,t29, t84, t90, t25,t28, t56,t64, t38,

t34, t35, t65, t13, t16, t95, t39,t49, t12, t40, t33,t63, t58, t23, t57,t59,

t52, t19, t45, t54, t11, t10,t14, t60, t53, t9,t7, t6, t4,t5, t1, t8, t2, t3

0.5 t81, t76, t83, t98, t100, t96, t70, t71, t86, t91, t30, t24, t92, t85, t72, t87,

t66, t43, t88, t82, t20, t36, t37, t78, t80, t50, t99, t74,t26, t51, t97,t21,

t47, t48, t61, t55, t67, t68, t69, t94, t32, t77, t79,t17, t75, t31,t89, t27,

t22,t93, t42, t41, t62, t46, t15, t18, t44, t73,t29, t84, t25,t28, t90,t56, t64,

t38, t34, t35, t16, t13, t65, t95, t39,t49, t12, t33,t40, t63, t58, t23, t57,

t59, t52, t19, t45, t54, t11, t10, t14, t60, t53,t9, t7, t6, t4, t5, t1, t8, t2,

t3

0.6

t81, t76, t83, t96 , t98, t100, t70, t71, t86, t24, t30, t91, t85, t92, t66, t72,

t87, t43, t88, t20, t36, t37,t78, t82, t80, t74, t50, t26, t99, t51,t55, t21,

t47, t48, t61, t97,t67, t68, t69, t94, t17, t32, t77, t79, t27,t31, t75, t22,

t89, t93, t15,t46, t42, t18, t44, t41, t62, t73, t29, t25,t28, t84, t56,t90, t16,

t38,t64, t34, t35, t13, t65, t12, t95, t33, t39,t49, t63, t40,t23, t58, t52,t57,

t59, t19, t45, t10, t14, t11, t54, t60,t53, t9, t7, t6, t4, t1, t5, t8, t2, t3

Appendix A 89

0.7

t81, t76, t83, t96, t70, t71, t86, t98, t100, t24, t30, t85, t91, t66, t92,t20,

t36, t37, t72, t87, t43, t88, t78, t82, t26, t74, t50, t80, t55,t51, t17, t21,

t47, t48, t61, t99, t67, t68, t69, t94, t27, t97, t32,t22, t31, t77, t79, t75,

t15, t93,t46, t89, t18, t44, t42, t41, t62,t73, t29, t25, t28, t84, t16, t38,

t56,t13, t34, t35, t64, t90, t65,t12, t33, t63, t39, t49, t95, t40, t23, t52,t58,

t10, t14, t57, t59,t19, t45, t11, t54, t53, t60, t9, t7, t6, t4,t1, t5, t2, t8, t3

0.8 t81, t76, t83, t96, t70, t71,t86, t24, t98, t100, t30, t85, t66, t91, t20,

t36,t37, t92, t43, t72, t87,t78, t88, t26, t74, t82, t55, t50, t17, t80, t51,t21,

t47, t48, t61, t27,t67, t68, t69, t94, t99, t22, t32, t15, t31, t97,t77, t79,

t75, t46, t93,t18, t44, t89, t42, t41, t62, t29, t73, t25, t28,t16, t84, t38,

t56, t13,t34, t35, t64, t65, t90, t12, t33, t63, t39, t49,t95, t40, t23, t52,

t10,t14, t58, t57, t59, t19, t45, t11, t54, t53, t9, t60, t7, t6, t4, t1, t5, t2,

t8, t3

0.9

t81, t76, t83, t96, t24, t70, t71, t86, t98, t100, t30, t85, t20, t36, t37,

t66,t91, t92, t43, t78, t72,t87, t26, t88, t74, t55, t17, t82, t50, t51, t80,t27,

t21, t47, t48, t61,t22, t67, t68, t69, t94, t15, t32, t31, t99, t77,t79, t97,

t46, t75, t93,t18, t44, t42, t89, t29, t25, t28, t41, t62, t73,t16,t38, t13,

t84, t56, t34, t35, t64, t65, t90, t12, t33, t63, t39,t49, t40, t95, t23, t52,

t10, t14, t58, t57, t59, t19, t45, t11, t54, t53,t7, t9, t60, t6, t4, t1, t5,t2,

t8, t3

1 t81, t76, t24, t83, t70, t71,t86, t96, t30, t20, t36, t37, t85,t98, t100, t66,

t26, t43, t78, t91, t92, t17, t55, t72, t74, t87, t88,t27, t50, t51,t82, t15,

t21, t22, t47, t48, t61, t80, t67, t68, t69, t94,t31, t32, t46,t77, t79, t99,

t18, t44, t75, t93, t97, t25, t28, t29, t42,t16, t41, t62,t73, t89, t13, t38,

t34, t35, t56, t84, t64, t65, t12, t33,t90, t63, t23,t39, t40, t49, t10, t14,

t52, t95, t11, t19, t45, t57, t58,t59, t54, t7,t9, t53, t6, t4, t60, t1, t5, t2,

t8, t3

Appendix A 90

Table A.2: Prioritized Test Suite for Social Network Product Line Based on
Proposed Criterion

Value

for α

Prioritized Test Suite

0.1 t87, t88, t90, t82, t89, t91, t92, t83, t84, t86, t85, t100, t55, t57,

t97, t79, t77, t61, t56, t58, t59, t78, t80, t81, t60, t62, t63, t94,

t40, t95, t96, t71, t73, t48, t41, t42, t72, t74, t75, t49, t50, t52, t99,

t76, t51, t53, t54, t98, t29, t93, t66, t30, t31, t33, t70, t67, t68, t37,

t69, t32, t34,t35, t43,t45, t27,t28, t36,t38, t39,t44, t46,t47, t24,t25,

t26,t64, t13,t65, t14,t15, t17,t21, t16,t18, t19,t20, t22,t23, t10,t11,

t12,t8, t6,t7, t4,t5, t2,t3, t1,t9

0.2 t87,88, t90, t89, t91, t92, t82, t83, t84, t86, t85, t100, t55, t57, t97,

t77, t79, t56, t58, t59, t71, t73, t40, t61, t78, t80, t81, t48, t60,

t72, t74, t75, t62, t63, t94, t41, t42, t49, t50, t52, t95, t96, t99,

t76, t51, t53, t54, t98, t29, t66, t67, t68, t30, t31, t33, t70, t93, t69,

t32, t34,t35,t43, t37,t45, t27,t28, t36,t38, t39,t44, t24,t46, t47,t25,

t26,t64, t13,t65, t14,t15, t17,t21, t16,t18, t19,t20, t22,t23, t10,t11,

t12,t8, t6,t7, t4,t5, t2,t3, t1,t9

0.3 t87, t88, t90, t89, t91, t92, t82, t83, t84, t86, t85, t100, t71, t73,

t55, t57, t97, t40, t77, t48, t72, t74, t75, t56, t58, t59, t79, t41,

t42, t49, t50, t52, t61, t78, t99, t80, t81, t76, t51, t53, t54, t60, t98,

t62, t63, t94, t66, t29, t95, t96, t67, t68, t30, t31, t33, t70, t69, t32,

t34, t35,t43,t24, t37,t45, t93,t27, t28,t36, t44,t25, t26,t38, t39,t46,

t47,t13, t64,t14, t15,t17, t65,t16, t18,t19, t21,t20, t22,t23, t10,t11,

t12,t8, t6,t7, t4,t5, t2,t3, t1,t9

0.4 t87,88, t90,89, t91,92, t82,83, t84,86, t85, t100, t71, t73, t40,72,

t74,75, t48, t55, t57, t77, t97, t41, t42, t49, t50, t52, t56, t58, t59, t99,

t66, t76, t79, t51, t53, t54, t98, t78, t61, t29, t80, t81, t67, t68, t60,

t62, t63, t94, t30, t31, t33, t70, t24, t95, t96, t69, t43, t32,t34,t35,

t25,t26, t37,t45, t13,t44, t27,t28, t36,t46, t47,t38, t39,t93, t14,t15,

t17,t64, t65,t16, t18,t19, t21,t20, t22,t23, t10,t11, t12,t8, t6,t7, t4,t5,

t2,t3, t1,t9

Appendix A 91

0.5

t87, t88, t90, t89, t91, t92, t82, t83, t84, t86, t100, t85, t71, t73, t72, t74,

t75, t40, t48, t49, t50, t52, t41, t42, t55, t57, t77, t66, t97, t99, t76, t51,

t53, t54, t56, t58, t59, t98, t67, t68, t29, t79, t24, t78, t30, t31, t33, t61,

t80, t81, t70, t25, t26, t60, t69, t43, t62, t63, t94, t32, t34,t35,t13, t95,t96,

t45,t37, t44,t14, t15,t17, t27,t28, t36,t46, t47,t38, t39,t64, t16,t18, t19,t93,

t65,t21, t20,t22, t23,t10, t11,t12, t8,t6, t7,t4, t5,t2, t3,t1, t9

0.6

t87, t88, t90, t89, t91, t92, t82, t100, t71, t73, t83, t84, t86, t85, t72,

t74, t75, t48, t40, t66, t49, t50, t52, t41, t42, t99, t55, t57, t77, t67, t68,

t51, t53, t54, t76, t24, t98, t97, t29, t56, t58, t59, t25, t26, t30, t31, t33,

t70, t79, t13, t43, t78, t69, t32, t34, t35, t61, t80, t81, t60,t14,t15, t17,t62,

t63,t94, t45,t37, t95,t96, t16,t18, t19,t44, t64,t27, t28,t36, t46,t47, t38,t39,

t65,t21, t93,t20, t22,t23, t10,t11, t12,t8, t6,t7, t4,t5, t2,t3, t1,t9

0.7

t87, t88, t90, t89, t91, t92, t82, t71, t73, t100, t83, t84, t86, t72, t74, t75,

t48, t85, t40, t66, t49, t50, t52, t24, t41, t42, t67, t68, t99, t51, t53, t54,

t76, t98, t29, t77, t25, t26, t55, t57, t97, t13, t30, t31, t33, t56, t58, t59,

t70, t43, t69, t32, t34, t35, t14, t15, t17, t79, t78, t80, t81,t16, t18,t19,

t61,t60, t45,t64, t37,t62, t63,t94, t44,t27, t28,t36, t46,t47, t95,t96, t65,t38,

t39,t21, t20,t22, t23,t93, t10,t11, t12,t8, t6,t7, t4,t5, t2,t3, t1,t9

0.8

t87, t88, t90, t89, t91, t92, t71, t73, t100, t82, t72, t74, t75, t83, t84,

t86, t48, t66, t40, t24, t85, t49, t50, t52, t67, t68, t41, t42, t25, t26, t99,

t51, t53, t54, t76, t29, t98, t13, t77, t55, t57, t30, t31, t33, t97, t14, t15,

t17, t70, t43, t56, t58, t59, t69, t32, t34, t35, t16, t18, t19, t79, t78,t64,

t80,t81, t45,t61, t37,t44, t21,t60, t65,t27, t28,t36, t46,t47, t62,t63, t94,t20,

t38,t39, t22,t23, t95,t96, t93,t10, t11,t12, t8,t6, t7,t4, t5,t2, t3,t1, t9

0.9

t87, t88, t90, t89, t91, t92, t71, t73, t100, t72, t74, t75, t82, t66, t24,

t48, t40, t83, t84, t86, t67, t68, t25, t26, t49, t50, t52, t41, t42, t13, t85,

t99, t51, t53, t54, t29, t76, t98, t14, t15, t17, t30, t31, t33, t77, t70, t55,

t57, t16, t18, t19, t43, t97, t69, t32, t34, t35, t56, t58, t59, t64, t79,t21,

t78,t45, t65,t20, t37,t80, t81,t44, t61,t22, t23,t27, t28,t36, t46,t47, t60,t38,

t39,t62, t63,t94, t95,t96, t93,t10, t11,t12, t8,t6, t7,t4, t5,t2, t3,t1, t9

Appendix A 92

1 t87, t88, t90, t89, t91, t92, t71, t73, t72, t74, t75, t24, t100, t66, t48, t82,

t25, t26, t40, t67, t68, t13, t49, t50, t52, t83, t84, t86, t41, t42, t14, t15,

t17, t99, t29, t51, t53, t54, t85, t76, t98, t16, t18, t19, t30, t31, t33, t70,

t43, t77, t55, t57, t69, t32, t34, t35, t97, t56, t58, t59, t64,t21,t20, t65,t45,

t79,t22, t23,t37, t44,t78, t27,t28, t36,t46, t47,t80, t81,t61, t38,t39, t60,t62,

t63,t94, t95,t96, t10,t11, t12,t93, t8,t6, t7,t4, t5,t2, t3,t1, t9

Table A.3: Prioritized Test Suite for Transport Network Product Line Based
on Proposed Criterion

Value

for α

Prioritized Test Suite

0.1 t65, t67, t66, t68, t96, t97, t58, t99, t60, t25, t27, t95, t59, t62, t98,

t61, t64, t100, t26, t29, t28, t31, t63, t30, t32, t69, t71, t77, t85, t79,

t70, t73, t21, t87, t72, t75, t78, t81, t20, t23, t86, t89, t90, t80, t83,

t92, t74, t22, t82, t57, t76, t24, t84, t88, t33, t91, t94, t35, t93, t34,

t36, t9, t38, t44, t52, t15, t46, t54, t37, t40, t10, t12, t39, t42, t45,

t48, t53, t56, t11, t16, t47, t50, t55, t17, t19, t41, t13, t49, t1, t18,

t43, t14, t3, t51, t2, t5, t4, t7, t6, t8

0.2 t65, t67, t58, t66, t60, t96, t25, t68, t97, t59, t62, t27, t99, t61, t64,

t95, t26, t29, t63, t98, t28, t31, t100, t30, t32, t69, t71, t77, t85, t79,

t70, t73, t87, t21, t72, t75, t78, t81, t86, t89, t20, t23, t90, t74, t80,

t83, t22, t92, t82, t57, t76, t88, t24, t33, t84, t91, t94, t35, t93, t34,

t36, t9, t38, t44, t52, t15, t46, t54, t37, t40, t10, t12, t39, t42, t45,

t48, t53, t56, t11, t16, t47, t50, t55, t41, t17, t19, t13, t1, t49, t18,

t43, t3, t14, t51, t2, t5, t4, t7, t6, t8

Appendix A 93

0.3

t65, t58, t67, t60, t66, t25, t59, t62, t96, t97, t27, t68, t61, t64, t63, t95,

t26, t29, t99, t28, t31, t98, t30, t100, t69, t32, t71, t77, t85, t70, t73, t87,

t79, t21, t72, t75, t86, t89, t78, t81, t90, t20, t23, t74, t22, t80, t83, t92,

t88, t82, t33, t57, t76, t24, t91, t94, t35, t84, t93, t36, t34, t9, t38, t44,

t52, t15, t46, t54, t37, t40, t10, t12, t39, t42, t45, t48, t53, t56, t11, t16,

t41, t13, t47, t50, t55, t1, t17, t19, t49, t18, t43, t3, t14, t51, t2, t5, t4,

t7, t6, t8

0.4

t58, t65, t60, t67, t66, t59, t62, t25, t61, t64, t27, t96, t63, t97, t68, t26,

t29, t95, t99, t28, t31, t30, t98, t69, t100, t32, t71, t77, t85, t70, t73, t87,

t21, t79, t72, t75, t86, t89, t78, t81, t90, t74, t20, t23, t22, t88, t80, t83,

t92, t33, t82, t57, t76, t91, t94, t24, t35, t36, t9, t34, t84, t93, t38, t44,

t52, t15, t37, t40, t10, t12, t46, t54, t39, t42, t45, t48, t53, t56, t11, t41,

t16, t13, t1, t47, t50, t55, t17, t19, t49, t3, t18, t43, t14, t2, t5, t51, t4,

t7, t6, t8

0.5 t58, t65, t60, t59, t62, t25, t67, t66, t61, t64, t63, t27, t96, t26, t29, t97,

t95, t68, t28, t31, t99, t30, t98, t69, t100, t32, t71, t77, t85, t70, t73, t87,

t21, t79, t72, t75, t86, t89, t78, t81, t74, t90, t20, t23, t22, t88, t33, t80,

t83, t92, t82, t36, t57, t76, t91, t94, t35, t9, t24, t34, t38, t93, t44, t52,

t84, t37, t40, t15, t10, t12, t46, t54, t39, t42, t45, t48, t53, t56, t41, t11,

t16, t13, t1, t47, t50, t55, t49, t17, t19, t3, t18, t43, t14, t2, t5, t51, t4,

t7, t6, t8

0.6

t58, t65, t60, t59, t62, t25, t67, t66, t61, t64, t63, t27, t26, t29, t96, t97,

t95, t68, t28, t31, t30, t99, t69, t98, t71, t32, t100, t77, t85, t70, t73, t87,

t21, t79, t72, t75, t86, t89, t74, t78, t81, t90, t20, t23, t88, t22, t33, t36,

t80, t83, t92, t82, t9, t91, t94, t57, t76, t35, t38, t34, t24, t44, t52, t37,

t40, t93, t15, t10, t12, t84, t46, t54, t39, t42, t45, t48, t53, t56, t41, t11,

t16, t13, t1, t47, t50, t55, t49, t17, t19, t3, t18, t43, t2, t5, t14, t51, t4,

t7, t6, t8

Appendix A 94

0.7 t58, t60, t65, t59, t62, t25, t67, t66, t61, t64, t63, t27, t26, t29, t96, t95,

t97, t68, t28, t31, t30, t69, t99, t98, t71, t70, t73, t32, t77, t85, t87, t100,

t21, t72, t75, t79, t86, t89, t74, t78, t81, t90, t88, t20, t23, t22, t33, t36,

t9, t80, t83, t92, t82, t91, t94, t35, t57, t76, t38, t34, t44, t52, t37, t40,

t24, t15, t10, t12, t93, t84, t46, t54, t39, t42, t41, t45, t48, t53, t56, t11,

t13, t1, t16, t47, t50, t55, t49, t3, t17, t19, t18, t43, t2, t5, t14, t4, t7,

t51, t6, t8

0.8

t58, t60, t59, t62, t65, t25, t61, t64, t63, t67, t66, t27, t26, t29, t96, t95,

t97, t28, t31, t30, t68, t69, t99, t98, t71, t70, t73, t87, t77, t85, t32, t21,

t100, t72, t75, t86, t89, t74, t79, t88, t78, t81, t90, t20, t23, t36, t22, t33,

t9, t80, t83, t92, t82, t91, t94, t38, t37, t40, t35, t44, t52, t57, t76, t34,

t10, t12, t15, t24, t93, t39, t42, t46, t54, t41, t45, t48, t53, t56, t84, t11,

t13, t1, t16, t47, t50, t55, t49, t3, t17, t19, t2, t5, t18, t43, t14, t4, t7, t6,

t51, t8

0.9

t58, t60, t59, t62, t65, t25, t61, t64, t63, t67, t66, t27, t26, t29, t96, t95,

t97, t28, t31, t30, t69, t68, t99, t98, t71, t70, t73, t87, t77, t85, t32, t21,

t100, t72, t75, t86, t89, t74, t88, t79, t36, t78, t81, t90, t20, t23, t22, t33,

t9, t38, t80, t83, t92, t82, t37, t40, t91, t94, t44, t52, t35, t34, t57, t76,

t10, t12, t15, t24, t39, t42, t93, t41, t46, t54, t45, t48, t53, t56, t11, t13,

t1, t84, t16, t47, t50, t55, t49, t3, t2, t5, t17, t19, t18, t43, t14, t4, t7, t6,

t51, t8

1 t58, t59, t60, t62, t65, t25, t61, t63, t64, t66, t67, t26, t27, t29, t95, t96,

t28, t30, t31, t97, t69, t68, t98, t99, t70, t71, t73, t87, t77, t85, t21, t32,

t100, t36, t72, t74, t75, t86, t88, t89, t78, t79, t81, t90, t9, t20, t22, t23,

t33, t37, t38, t40, t44, t52, t80, t82, t83, t91, t92, t94, t10, t12, t34, t35,

t15, t57, t76, t24, t39, t41, t42, t45, t46, t48, t53, t54, t56, t93, t1, t11,

t13, t16, t84, t47, t49, t50, t55, t2, t3, t5, t17, t18, t19, t43, t14, t4, t6,

t7, t51, t8

Appendix B

Subject Product Line

This section includes the Feature Model that are used in the research work.

Figure B.1: E-Commerce Feature Model.

95

Appendix B 96

Figure B.2: Social Network Feature Model.

Appendix B 97

Figure B.3: Transport Network Feature Model.

Appendix C

Test Suite for Subject Product

Line

This section includes the test cases that are generated from the Feature Model

of subject product lines. Each test case consists of number of features in it.

Each feature of E-commerce,social network and transport network product line is

represented with the alphanumeric data represented in TABLE C.1, C.3 and C.5

and test suites are illustrated in TABLE C.2, C.4 and C.6 respectively.

Table C.1: Alphanumeric Character for Features of E-Commerce Product
Line

Character Features Character Features

f1 Eshop f13 search

f2 register f14 add item to cart

f3 order history f15 view item

f4 catalouge f16 credit card

f5 logout f17 CoD

f6 login f18 Bank Transfer

f7 payment f19 update product

98

Appendix C 99

Character Features Character Features

f8 cart f20 view cart

f9 security f21 High

f10 view history f22 Standard

f11 feedback f23 report problem

f12 wishlist f24 review

Table C.2: E-Commerce Product Line Test Suite

Test Case Features

t1 f4, f14, f15, f7, f16, f17, f18, f8, f20, f9,f21

t2 f4, f14, f15, f7, f16, f18, f8, f20, f9, f21

t3 f4, f14, f15, f7, f18, f8, f20, f9, f21

t4 f4, f14, f15, f7, f16, f17, f8, f19, f20, f9, f21

t5 f4, f14, f15, f7, f17, f8, f19, f20, f9, f22

t6 f4, f13, f14, f15, f7, f16, f17, f18, f8, f20, f9, f21

t7 f1,f4, f13, f14, f15, f7, f17, f18, f8, f19, f20, f9, f21

t8 f1,f4, f13, f14, f15, f7, f18, f8, f20, f9, f21

t9 f1,f2, f4, f13, f14, f15, f7, f17, f8, f19, f20, f9, f21

t10 f1,f2, f4, f14, f15, f6, f7, f16, f18, f8, f19, f20, f9, f21

t11 f1,f2, f4, f13, f14, f15, f6, f7, f17, f8, f19, f20, f9, f21

t12 f1,f2, f4, f12, f13, f14, f15, f6, f7, f16, f18, f8, f20, f9, f21

t13 f1,f2, f4, f12, f13, f14, f15, f6, f7, f17, f8, f19, f20, f9, f21

t14 f1,f2, f3, f10, f4, f14, f15, f6, f7, f16, f17, f8, f20, f9, f21,

t15 f1,f2, f3, f10, f4, f12, f14, f15, f6, f7, f16, f17, f18, f8, f20, f9, f21

t16 f1, f2, f3, f10, f4, f12, f14, f15, f6, f7, f16, f17, f8, f20, f9, f21

t17 f1,f2,f3, f10,f4,f13, f14, f15,f6, f7,f16, f17, f18, f8, f19,f20, f9, f21

t18 f1,f2, f3, f10, f4, f13, f14, f15, f6, f7, f16, f18, f8, f19, f20, f9, f21

t19 f1,f2, f3, f10, f4, f13, f14, f15, f6, f7, f17, f8, f20, f9, f22

t20 f1,f2, f3, f10, f4,f12, f13, f14, f15, f6,f7, f17, f18, f8,f19, f20,f9, f21

t21 f1,f2, f3, f10, f4, f12, f13, f14, f15, f6, f7, f16, f8, f19, f20, f9, f21

Appendix C 100

t22 f1,f2, f3, f10, f11, f23, f24, f4, f14, f15, f6, f7, f16, f18, f8, f19, f20, f9, f21

t23 f1,f2, f3, f10, f11, f23, f24, f4, f14, f15, f6, f7, f17, f8, f20, f9, f22

t24 f1,f2, f3,f10, f11,f23, f24,f4, f12,f14, f15,f6, f7,f16, f18,f8, f19,f20, f9, f21

t25 f1,f2,f3,f10, f11, f23, f24, f4,f12, f14, f15, f6, f7, f17, f8, f20, f9,f21

t26 f1,f2, f3, f10, f11, f23, f24, f4, f12, f14, f15, f6, f7, f17, f8, f19, f20, f9, f22

t27 f1,f2, f3, f10, f11, f23, f24, f4,f13, f14,f15, f6,f7, f16,f17, f18,f8,f20, f9,f21

t28 f1,f2, f3, f10, f11, f23, f24, f4, f13, f14, f15, f6, f7, f17, f18, f8, f20, f9, f21

t29 f1,f2, f3, f10, f11, f23, f24, f4, f13, f14, f15, f6, f7, f16, f18, f8, f20, f9, f21

t30 f1,f2, f3, f10, f11, f23, f24, f4,f12, f13, f14, f15, f6, f7, f18, f8,19, f20, f9,21

t31 f1, f2, f3, f10, f11, f23, f24, f4, f12, f13, f14, f15, f6, f7, f17, f8, f20, f9, f21

t32 f1, f2, f3, f10, f11, f23, f24, f4, f12, f13, f14, f15, f6, f7, f16, f8, f20, f9, f21

t33 f1, f2, f3, f10, f11, f24, f4, f14, f15, f6, f7, f16, f18, f8, f20, f9, f21

t34 f1, f2, f3, f10, f11, f24, f4, f14, f15, f6, f7, f18, f8, f19, f20, f9, f21

t35 f1, f2, f3, f10, f11, f24, f4, f14, f15, f6, f7, f16, f8, f19, f20, f9, f21

t36 f1, f2, f3, f10, f11, f24, f4, f12, f14, f15, f6, f7, f17, f18, f8, f19, f20, f9, f21

t37 f1, f2, f3, f10, f11, f24, f4, f12, f14, f15, f6, f7, f16, f17, f8, f19, f20, f9, f21

t38 f1, f2, f3, f10, f11, f24, f4, f12, f14, f15, f6, f7, f17, f8, f20, f9, f21

t39 f1, f2, f3, f10, f11, f24, f4, f13, f14, f15, f6, f7, f18, f8, f20, f9, f21

t40 f1, f2, f3, f10, f11, f24, f4, f13, f14, f15, f6, f7, f17, f8, f20, f9, f21

t41 f1, f2, f3, f10, f11, f24, f4, f13, f14, f15, f6, f7, f16, f8, f19, f20, f9, f21

t42 f1, f2, f3, f10, f11, f24, f4, f12, f13, f14, f15, f6, f7, f17, f8, f20, f9, f21

t43 f1, f2, f3, f10, f11, f24, f4, f12, f13, f14, f15, f6, f7, f16, f8, f19, f20, f9, f21

t44 f1, f2, f3, f10, f11, f23, f4, f14, f15, f6, f7, f16, f18, f8, f19, f20, f9, f21

t45 f1, f2, f3, f10, f11, f23, f4, f14, f15, f6, f7, f17, f8, f20, f9, f21

t46 f1, f2, f3, f10, f11, f23, f4, f12, f14, f15, f6, f7, f16, f17, f8, f20, f9, f21

t47 f1, f2, f3, f10, f11, f23, f4, f12, f14, f15, f6, f7, f16, f8, f19, f20, f9, f21

t48 f1, f2, f3, f10, f11, f23, f4, f13, f14, f15, f6, f7, f16, f18, f8, f19, f20, f9, f21

t49 f1, f2, f3, f10, f11, f23, f4, f13, f14, f15, f6, f7, f16, f8, f20, f9, f21

t50 f1, f2, f3, f10, f11, f23, f4, f12, f13, f14, f15, f6, f7, f16, f18, f8, f20, f9, f21

t51 f1,f2, f3, f10, f11, f23, f4, f12, f13, f14, f15, f6, f7, f16, f17, f8, f20, f9, f21

Appendix C 101

t52 f1,f2, f4, f14, f15, f5, f6, f7, f16, f17, f18, f8, f20, f9, f21

t53 f1,f2, f4, f14, f15, f5, f6, f7, f16, f17, f8, f20, f9, f21

t54 f1,f2, f4, f14, f15, f5, f6, f7, f17, f8, f19, f20, f9, f21

t55 f1,f2, f4, f12, f14, f15, f5, f6, f7, f16, f17, f18, f8, f19, f20, f9, f21

t56 f1,f2, f4, f12, f14, f15, f5, f6, f7, f18, f8, f19, f20, f9, f21

t57 f1,f2, f4, f12, f14, f15, f5, f6, f7, f17, f8, f20, f9, f22

t58 f1,f2, f4, f13, f14, f15, f5, f6, f7, f16, f18, f8, f20, f9, f21

t59 f1,f2, f4, f13, f14, f15, f5, f6, f7, f16, f17, f8, f20, f9, f21

t60 f1,f2, f4, f13, f14, f15, f5, f6, f7, f16, f8, f20, f9, f21

t61 f1,f2, f4, f12, f13, f14, f15, f5, f6, f7, f17, f18, f8, f19, f20, f9, f21

t62 f1,f2, f4, f12, f13, f14, f15, f5, f6, f7, f17, f8, f19, f20, f9, f22

t63 f1,f2, f3, f10, f4, f14, f15, f5, f6, f7, f17, f18, f8, f20, f9, f21

t64 f1,f2, f3, f10, f4, f14, f15, f5, f6, f7, f18, f8, f19, f20, f9, f21

t65 f1,f2, f3, f10, f4, f14, f15, f5, f6, f7, f17, f8, f19, f20, f9, f22

t66 f1,f2, f3, f10, f4, f12, f14, f15, f5, f6, f7, f16, f18, f8, f19, f20, f9, f21

t67 f1,f2, f3, f10, f4, f12, f14, f15, f5, f6, f7, f17, f8, f19, f20, f9, f21

t68 f1,f2, f3, f10, f4, f13, f14, f15, f5, f6, f7, f17, f18, f8, f19, f20, f9, f21

t69 f1,f2, f3, f10, f4, f13, f14, f15, f5, f6, f7, f16, f17, f8, f19, f20, f9, f21

t70 f1,f2, f3, f10, f4, f12, f13, f14, f15, f5, f6, f7, f17, f18, f8, f19, f20, f9, f21

t71 f1,f2, f3, f10, f4, f12, f13, f14, f15, f5, f6, f7, f16, f17, f8, f19, f20, f9, f21

t72 f1,f2, f3, f10, f4, f12, f13, f14, f15, f5, f6, f7, f16, f8, f19, f20, f9, f21

t73 f1,f2, f3, f10, f11, f23, f24, f4, f14, f15, f5, f6, f7, f16, f18, f8, f20, f9, f21

t74 f1,f2, f3, f10, f11, f23, f24, f4,f14, f15, f5,f6, f7,f16, f17,f8, f19,f20, f9,f21

t75 f1,f2, f3, f10, f11, f23, f24, f4, f14, f15, f5, f6, f7, f16, f8, f19, f20, f9, f21

t76 f1,f2, f3,f10, f11,f23, f24,f4, f12,f14, f15,f5, f6,f7, f16,f18, f8,f19, f20,f9, f21

t77 f1,f2, f3, f10, f11, f23, f24, f4, f12, f14, f15, f5, f6, f7, f17, f8, f20, f9, f22

t78 f1,f2, f3, f10, f11,f23, f24,f4, f13,f14, f15,f5, f6,f7, f16,f17, f18,f8, f20,f9, f21

t79 f1,f2, f3, f10, f11, f23,f24, f4,f13, f14,f15, f5,f6, f7,f16, f17,f8, f20, f9, f21

t80 f1,f2, f3, f10, f11, f23, f24, f4,f13, f14,f15, f5,f6, f7,f17, f8,f19, f20, f9,f21

t81 f1,f2, f3,f10, f11, f23, f24, f4,f12, f13,f14, f15,f5,f6,f7, f17,f18, f8, f19, f20

Appendix C 102

t82 f1,f2, f3, f10, f11, f23,f24, f4,f12, f13, f14, f15,f5,f6, f7,f17, f8,f20, f9,f21

t83 f1,f2, f3,f10, f11,f23,f24,f4, f12,f13, f14,f15, f5,f6, f7,f17, f8,f19, f20,f9, f22

t84 f1,f2, f3, f10, f11, f24, f4, f14, f15, f5, f6, f7, f16, f18, f8, f20, f9, f21

t85 f1,f2, f3, f10, f11, f24, f4, f12, f14, f15, f5,f6,f7,f16, f17, f18, f8,f20, f9, f21

t86 f1,f2, f3,f10, f11, f24, f4,f12, f14, f15, f5,f6, f7,f17, f18, f8,f19, f20, f9, f21

t87 f1,f2, f3, f10, f11, f24, f4, f12, f14, f15, f5, f6, f7, f18, f8, f19, f20, f9, f21

t88 f1,f2, f3, f10, f11, f24, f4, f12, f14, f15, f5, f6, f7, f17, f8, f19, f20, f9, f22

t89 f1,f2, f3, f10, f11, f24, f4, f13, f14, f15, f5, f6, f7, f16, f18, f8, f20, f9, f21

t90 f1,f2, f3, f10, f11, f24, f4, f13, f14, f15, f5, f6, f7, f17, f8, f20, f9, f22

t91 f1,f2, f3, f10, f11, f24, f4,f12, f13, f14, f15, f5,f6, f7,f16, f18,f8, f20,f9, f21

t92 f1,f2, f3,f10, f11, f24, f4,f12, f13, f14, f15, f5,f6,f7, f16, f17, f8,f20, f9,f21

t93 f1,f2, f3, f10, f11, f23, f4, f14, f15, f5, f6, f7, f16, f17, f18, f8, f20, f9, f21

t94 f1,f2, f3, f10, f11, f23, f4, f14, f15, f5, f6, f7, f17, f18, f8, f19, f20, f9, f21

t95 f1,f2, f3, f10, f11, f23, f4, f14, f15, f5, f6, f7, f16, f8, f20, f9, f21

t96 f1,f2, f3,f10, f11, f23, f4,f12, f14, f15, f5,f6, f7,f16, f18, f8,f19, f20, f9, f21

t97 f1,f2,f3, f10, f11, f23, f4, f13,f14, f15, f5,f6, f7,f17, f8,f19, f20, f9, f22

t98 f1,f2, f3, f10, f11, f23, f4,f12, f13, f14,f15, f5,f6, f7,f18, f8,f19, f20, f9, f21

t99 f1,f2, f3, f10, f11, f23, f4, f12, f13, f14, f15, f5, f6, f7, f17, f8, f20, f9, f22

t100 f1,f2, f3, f10, f11, f23, f4,f12, f13, f14, f15, f5,f6, f7,f16, f8, f19, f20, f9,f21

Table C.3: Alphanumeric Character for Features of Social Network Product
Line

Character Features Character Features

f1 social f17 text message

f2 login f18 group message

f3 logout f19 audio message

f4 register f20 manage friends

f5 notification f21 request

f6 post f22 friend request

f7 create post f23 follow request

Appendix C 103

Character Features Character Features

f8 view post f24 remove

f9 comment f25 unfollow

f10 like f26 unfriend

f11 share f27 block

f12 call f28 search

f13 voice call f29 by name

f14 video call f30 by email

f15 group call f31 by contact no

f16 message

Table C.4: Social Network Product Line Test Suite

Test Case Features

t1 f1, f2, f3, f4, f5, f6, f7, f8

t2 f1, f2, f3, f4, f5, f6, f7, f8, f9

t3 f1, f2, f3, f4, f5, f6, f7, f8, f10

t4 f1, f2, f3, f4, f5, f6, f7, f8, f9, f10

t5 f1, f2, f3, f4, f5, f6, f7, f8, f11

t6 f1, f2, f3, f4, f5, f6, f7, f8, f9, f11

t7 f1, f2, f3, f4, f5, f6, f7, f8, f10, f11

t8 f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11

t9 f1, f2, f3, f4, f5, f6, f8

t10 f1, f2, f3, f4, f5, f12, f13, f15, f6, f7, f20, f21, f22, f24, f26, f27

t11 f1, f2, f3, f4, f5, f12, f13, f15, f6, f7, f20, f21, f22, f24, f27

t12 f1, f2, f3, f4, f5, f12, f13, f15, f6, f7, f20, f21, f22, f24, f26

t13 f1,f2,f3,f4, f5, f12, f13, f14, f15,f6,f7,f8, f20, f21, f22, f23, f24, f25,

f26, f27

t14 f1, f2, f3, f4, f5, f12, f13, f14, f15, f6, f7, f8, f20, f21, f22, f23, f24,

f26, f27

Appendix C 104

t15 f1, f2,f3, f4,f5,f12, f13, f14, f15,f6, f7,f8, f20, f21, f22, f23, f24, f25,f27

t16 f1,f2,f3, f4, f5, f12, f13, f14, f15, f6,f7,f8,f20, f21, f22, f23, f24, f27

t17 f1, f2, f3, f4, f5, f12, f13, f14, f15,f6,f7,f8, f20, f21, f22, f23, f24, f25, f26

t18 f1,f2,f3,f4,f5, f12, f13, f14, f15, f6,f7,f8, f20, f21, f22, f23, f24, f26

t19 f1,f2,f3,f4,f5, f12,f13,f14, f15, f6,f7, f8, f20, f21, f22, f23, f24, f25

t20 f1, f2, f3, f4, f5, f12, f13, f14, f15, f6, f7, f8, f20, f21, f23, f24, f25

t21 f1, f2, f3, f4,f5,f12,f13, f14, f15, f6,f7, f8, f20, f21, f22,f24,f26, f27

t22 f1, f2, f3, f4, f5, f12, f13, f14, f15, f6, f7, f8, f20, f21, f22, f24, f27

t23 f1, f2, f3, f4, f5, f12, f13, f14, f15, f6, f7, f8, f20, f21, f22, f24, f26

t24 f1,f2,f3,f4,f5,f12,f13,f14, f15,f6, f7,f8, f9, f20, f21, f22, f23,f24, f25,f26,f27

t25 f1, f2,f3,f4,f5,f12,f13,f14,f15, f6, f7, f8, f9, f20, f21, f22, f23, f24, f26, f27

t26 f1, f2, f3, f4, f5,f12,f13,f14,f15, f6, f7,f8,f9,f20, f21, f22, f23, f24, f25, f27

t27 f1,f2,f3,f4,f5,f12, f13, f15, f16, f17, f18, f19, f6,f8,f9, f20, f21, f22, f24, f27

t28 f1, f2,f3,f4,f5,f12,f13, f15, f16, f17, f18,f19, f6, f8, f9, f20, f21, f22, f24, f26

t29 f1, f2, f3, f4, f5, f12, f13, f15, f16, f17, f18,f19,f6,f8,f10,f20,f21,f22,f23, f24,

f25, f26, f27

t30 f1, f2, f3, f4, f5, f12, f13, f15, f16, f17, f18, f19, f6, f8, f10, f20, f21, f22,

f23, f24, f26, f27

t31 f1, f2, f3, f4, f5, f12, f13, f15, f16, f17, f18, f19, f6, f8, f10, f20, f21, f22,

f23, f24, f25, f27

t32 f1, f2, f3, f4, f5, f12, f13, f15, f16, f17, f18, f19, f6, f8, f10, f20, f21, f22,

f23, f24, f27

t33 f1,f2, f3, f4,f5,f12, f13,f15, f16, f17, f18, f19, f6, f8, f10, f20, f21, f22, f23,

f24, f25,f26

t34 f1, f2,f3,f4,f5,f12,f13,f15,f16,f17,f18,f19,f6, f8,f10, f20, f21,f22,f23,f24,f26

t35 f1,f2,f3,f4,f5,f12,f13,f15,f16,f17,f18,f19,f6,f8,f10,f20,f21,f22,f23,f24,f25

t36 f1,f2,f3,f4,f5,f12,f13,f15,f16,f17,f18,f19,f6,f8,f10,f20,f21,f23,f24,f25

t37 f1,f2,f3,f4,f5,f12,f13,f15,f16,f17,f18,f19,f6,f8,f10,f20,f21,f22,f24,f26,f27

t38 f1,f2,f3,f4,f5,f12,f13,f15,f16,f17,f18,f19,f6, f8,f10,f20,f21,f22,f24,f27

t39 f1,f2,f3,f4,f5,f12,f13,f15,f16,f17,f18,f19,f6,f8,f10, f20,f21,f22,f24,f26

Appendix C 105

t40 f1,f2,f3,f4,f5,f12,f13,f15,f16,f17,f18,f19,f6,f8,f9,f10,f20,f21,f22,f23,f24, f25,

f26,f27

t41 f1,f2,f3,f4,f5,f12,f13,f15,f16,f17,f18,f19,f6,f8,f9,f10,f20,f21,f22,f23,f24, f26,

f27

t42 f1,f2,f3,f4,f5,f12,f13,f15,f16,f17,f18,f19,f6,f8,f9,f10,f20,f21,f22,f23,f24, f25,

f27

t43 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f10,f11,f20,f21,f22,f23,f24,f25,f28,f29,f31

t44 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f10,f11,f20,f21,f23,f24,f25,f28,f29,f31

t45 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f10,f11,f20,f21,f22,f24,f26,f27,f28,f29,f31

t46 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f10,f11,f20,f21,f22,f24,f27,f28,f29,f31

t47 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f10,f11,f20,f21,f22,f24,f26,f28,f29,f31

t48 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f9,f10,f11,f20,f21,f22,f23,f24,f25,f26,f27, f28,

f29, f31

t49 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f9,f10,f11,f20,f21,f22,f23,f24,f26,f27,f28,f29,f31

t50 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f9,f10,f11,f20,f21,f22,f23,f24,f25,f27,f28,f29,f31

t51 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f9,f10,f11,f20,f21,f22,f23,f24,f27,f28,f29,f31

t52 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f9,f10,f11,f20,f21,f22,f23,f24,f25,f26,f28,f29,f31

t53 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f9,f10,f11,f20,f21,f22,f23,f24,f26,f28,f29,f31

t54 f1,f2,f3,f4,f5,f12,f13,f6,f7,f8,f9,f10,f11,f20,f21,f22,f23,f24,f25,f28,f29,f31

t55 f1,f2,f3,f4,f5,f12,f13,f14,f6,f8,f9,f10,f11,f20,f21,f22,f23,f24,f25,f27,f28, f30,

f31

t56 f1,f2,f3,f4,f5,f12,f13,f14,f6,f8,f9,f10,f11,f20,f21,f22,f23,f24,f27, f28, f30,

f31

t57 f1,f2,f3,f4,f5,f12,f13,f14,f6,f8,f9,f10,f11,f20,f21,f22,f23,f24,f25,f26,f28, f30,

f31

t58 f1,f2,f3,f4,f5,f12,f13,f14,f6,f8,f9,f10,f11,f20,f21,f22,f23,f24,f26,f28,f30,f31

t59 f1,f2,f3,f4,f5,f12,f13,f14,f6,f8,f9,f10,f11,f20,f21,f22,f23,f24,f25,f28,f30,f31

t60 f1,f2,f3,f4,f5,f12,f13,f14,f6,f8,f9,f10,f11,f20,f21,f23,f24,f25,f28,f30,f31

t61 f1,f2,f3,f4,f5,f12,f13,f14,f6,f8,f9,f10,f11,f20,f21,f22,f24,f26,f27,f28,f30,f31

t62 f1,f2,f3,f4,f5,f12,f13,f14,f6,f8,f9,f10,f11,f20,f21,f22,f24,f27,f28,f30,f31

Appendix C 106

t63 f1,f2,f3,f4,f5,f12,f13,f14,f6,f8,f9,f10,f11,f20,f21,f22,f24,f26,f28,f30,f31

t64 f1,f2,f3,f4,f5,f12,f13,f14,f6,f7,f20,f21,f22,f23,f24,f25,f26,f27,f28,f30,f31

t65 f1,f2,f3,f4,f5,f12,f13,f14,f6,f7,f20,f21,f22,f23,f24,f26,f27,f28,f30,f31

t66 f1,f2,f3,f4,f5,f12,f13,f15,f6,f7,f8,f11,f20,f21,f22,f23,f24,f25,f26,f28,f29,f30

t67 f1,f2,f3,f4,f5,f12,f13,f15,f6,f7,f8,f11,f20,f21,f22,f23,f24,f26,f28,f29,f30

t68 f1,f2,f3,f4,f5,f12,f13,f15,f6,f7,f8,f11,f20,f21,f22,f23,f24,f25,f28,f29,f30

t69 f1,f2,f3,f4,f5,f12,f13,f15,f6,f7,f8,f11,f20,f21,f23,f24,f25,f28,f29,f30

t70 f1,f2,f3,f4,f5,f12,f13,f15,f6,f7,f8,f11,f20,f21,f22,f24,f26,f27,f28,f29,f30

t71 f1,f2,f3,f4,f5,f12,f13,f15,f6,f7,f8,f9,f11,f20,f21,f22,f23,f24,f25,f27,f28,f29,f30

t72 f1,f2,f3,f4,f5,f12,f13,f15,f6,f7,f8,f9,f11,f20,f21,f22,f23,f24,f27,f28,f29,f30

t73 f1,f2,f3,f4,f5,f12,f13,f15,f6,f7,f8,f9,f11,f20,f21,f22,f23,f24,f25,f26,f28,f29,f30

t74 f1,f2,f3,f4,f5,f12,f13,f15,f6,f7,f8,f9,f11,f20,f21,f22,f23,f24,f26,f28,f29,f30

t75 f1,f2,f3,f4,f5,f12,f13,f15,f6,f7,f8,f9,f11,f20,f21,f22,f23,f24,f25,f28,f29,f30

t76 f1,f2,f3,f4,f5,f12,f13,f15,f6,f7,f8,f9,f11,f20,f21,f23,f24,f25,f28,f29,f30

t77 f1,f2,f3,f4,f5,f12,f13,f15,f6,f8,f10,f11,f20,f21,f22,f23,f24,f25,f28,f29,f30,f31

t78 f1,f2,f3,f4,f5,f12,f13,f15,f6,f8,f10,f11,f20,f21,f23,f24,f25,f28,f29,f30,f31

t79 f1,f2,f3,f4,f5,f12,f13,f15,f6,f8,f10,f11,f20,f21,f22,f24,f26,f27,f28,f29,f30,f31

t80 f1,f2,f3,f4,f5,f12,f13,f15,f6,f8,f10,f11,f20,f21,f22,f24,f27,f28,f29,f30,f31

t81 f1,f2,f3,f4,f5,f12,f13,f15,f6,f8,f10,f11,f20,f21,f22,f24,f26,f28,f29,f30,f31

t82 f1,f2,f3,f4,f5,f12,f13,f15,f6,f8,f9,f10,f11,f20,f21,f22,f23,f24,f25,f26,f27,f28,

f29, f30, f31

t83 f1,f2,f3,f4,f5,f12,f13,f15,f6,f8,f9,f10,f11,f20,f21,f22,f23,f24,f26,f27,f28, f29,

f30, f31

t84 f1,f2,f3,f4,f5,f12,f13,f15,f6,f8,f9,f10,f11,f20,f21,f22,f23,f24,f25,f27,f28, f29,

f30, f31

t85 f1,f2,f3,f4,f5,f12,f13,f15,f6,f8,f9,f10,f11,f20,f21,f22,f23,f24,f27,f28,f29, f30,

f31

t86 f1,f2,f3,f4,f5,f12,f13,f15,f6,f8,f9,f10,f11,f20,f21,f22,f23,f24,f25,f26,f28,f29,

f30, f31

t87 f1,f2,f3,f4,f5,f12,f13,f14,f15,f6,f7,f8,f9,f10,f20,f21,f22,f23,f24,f26,f27,f28,

f29, f30, f31

Appendix C 107

t88 f1,f2,f3,f4,f5,f12,f13,f14,f15,f6,f7,f8,f9,f10,f20,f21,f22,f23,f24,f25,f27,f28,

f29, f30, f31

t89 f1,f2,f3,f4,f5,f12,f13,f14,f15,f6,f7,f8,f9,f10,f20,f21,f22,f23,f24,f27,f28, f29,

f30, f31

t90 f1,f2,f3,f4,f5,f12,f13,f14,f15,f6,f7,f8,f9,f10,f20,f21,f22,f23,f24,f25,f26,f28,f29,

f30, f31

t91 f1,f2,f3,f4,f5,f12,f13,f14,f15,f6,f7,f8,f9,f10,f20,f21,f22,f23,f24,f26,f28,f29,

f30, f31

t92 f1,f2,f3,f4,f5,f12,f13,f14,f15,f6,f7,f8,f9,f10,f20,f21,f22,f23,f24,f25,f28,f29,

f30, f31

t93 f1,f2,f3,f4,f5,f16,f17,f18,f6,f8,f11,f20,f21,f22,f24,f26,f28,f29,f30,f31

t94 f1,f2,f3,f4,f5,f16,f17,f18,f6,f8,f9,f11,f20,f21,f22,f24,f26,f27,f28,f29,f30,f31

t95 f1,f2,f3,f4,f5,f16,f17,f18,f6,f8,f9,f11,f20,f21,f22,f24,f27,f28,f29,f30,f31

t96 f1,f2,f3,f4,f5,f16,f17,f18,f6,f8,f9,f11,f20,f21,f22,f24,f26,f28,f29,f30,f31

t97 f1,f2,f3,f4,f5,f16,f17,f18,f6,f8,f10,f11,f20,f21,f22,f23,f24,f25,f26,f27,f28,

f29, f30, f31

t98 f1,f2,f3,f4,f5,f16,f17,f19,f6,f7,f8,f9,f11,f20,f21,f22,f23,f24,f27,f28,f29,f31

t99 f1,f2,f3,f4,f5,f16,f17,f19,f6,f7,f8,f10,f11,f20,f21,f22,f23,f24,f25,f26,f28, f29,

f31

t100 f1,f2,f3, f4,f5,f16,f17,f19,f6,f7,f8,f9,f10,f11,f20,f21,f22,f23,f24,f25,f26,f27,

f28, f29, f31

Table C.5: Alphanumeric Character for Features of Transport Network Prod-
uct Line

Character Features Character Features

f1 transport f13 SMS

f2 login f14 Call

f3 logout f15 help

f4 register f16 contact us

f5 book a ride f17 report problem

f6 book later f18 invite friends

Appendix C 108

Character Features Character Features

f7 book Now f19 via email

f8 payment f20 via SMS

f9 wallet f21 rides information

f10 cash f22 history

f11 credit card f23 schedule

f12 contact captain f24 notification

Table C.6: Transport Network Product Line Test Suite

Test Case Features

t1 f1,f2, f3, f4, f5, f6, f21, f22, f23, f8, f9, f10, f11

t2 f1,f2, f3, f4, f5, f6, f21, f22, f23, f8, f10, f11

t3 f1,f2, f3, f4, f5, f6, f21, f22, f23, f8, f9, f11

t4 f1,f2, f3, f4, f5, f6, f21, f22, f23, f8, f11

t5 f1,f2, f3, f4, f5, f6, f21, f22, f23, f8, f9, f10

t6 f1,f2, f3, f4, f5, f6, f21, f22, f23, f8, f10

t7 f1,f2, f3, f4, f5, f6, f21, f22, f23, f8, f9

t8 f1,f2, f3, f4, f5, f6, f21, f23, f8, f10

t9 f1,f2, f3, f4, f12, f13, f14, f5, f6, f21, f22, f23, f8, f9, f10, f11

t10 f1,f2, f3, f4, f12, f13, f14, f5, f6, f21, f22, f23, f8, f10, f11

t11 f1,f2, f3, f4, f12, f13, f14, f5, f6, f21, f22, f23, f8, f11

t12 f1,f2, f3, f4, f12, f13, f14, f5, f6, f21, f22, f23, f8, f9, f10

t13 f1,f2, f3, f4, f12, f13, f14, f5, f6, f21, f22, f23, f8, f10

t14 f1,f2, f3, f4, f12, f13, f14, f5, f6, f21, f23, f8, f10

t15 f1,f2, f3, f4, f12, f14, f5, f6, f21, f22, f23, f8, f9, f10, f11

t16 f1,f2, f3, f4, f12, f14, f5, f6, f21, f22, f23, f8, f10, f11

t17 f1,f2, f3, f4, f12, f14, f5, f6, f21, f22, f23, f8, f11

t18 f1,f2, f3, f4, f12, f14, f5, f6, f21, f22, f23, f8, f10

t19 f1,f2, f3, f4, f12, f14, f5, f6, f21, f22, f23, f8, f9

t20 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f17, f21, f22, f23, f8, f11

Appendix C 109

t21 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f17, f21, f22, f23, f8, f9, f10

t22 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f17, f21, f22, f23, f8, f10

t23 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f17, f21, f22, f23, f8, f9

t24 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f17, f21, f23, f8, f10

t25 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f17, f21, f22, f23, f8, f9, f10, f11

t26 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f17, f21, f22, f23, f8, f10, f11

t27 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f17, f21, f22, f23, f8, f9, f11

t28 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f17, f21, f22, f23, f8, f11

t29 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f17, f21, f22, f23, f8, f9, f10

t30 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f17, f21, f22, f23, f8, f10

t31 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f17, f21, f22, f23, f8, f9

t32 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f17, f21, f23, f8, f10

t33 f1,f2, f3, f4, f12, f14, f5, f6, f15, f21, f22, f23, f8, f9, f10, f11

t34 f1,f2, f3, f4, f12, f14, f5, f6, f15, f21, f22, f23, f8, f10, f11

t35 f1,f2, f3, f4, f12, f14, f5, f6, f15, f21, f22, f23, f8, f9, f11

t36 f1,f2, f3, f4, f5, f6, f18, f19, f20, f21, f22, f23, f8, f9, f10, f11

t37 f1,f2, f3, f4, f5, f6, f18, f19, f20, f21, f22, f23, f8, f10, f11

t38 f1,f2, f3, f4, f5, f6, f18, f19, f20, f21, f22, f23, f8, f9, f11

t39 f1,f2, f3, f4, f5, f6, f18, f19, f20, f21, f22, f23, f8, f11

t40 f1,f2, f3, f4, f5, f6, f18, f19, f20, f21, f22, f23, f8, f9, f10

t41 f1,f2, f3, f4, f5, f6, f18, f19, f20, f21, f22, f23, f8, f10

t42 f1,f2, f3, f4, f5, f6, f18, f19, f20, f21, f22, f23, f8, f9

t43 f1,f2, f3, f4, f5, f6, f18, f19, f20, f21, f23, f8, f10

t44 f1,f2, f3, f4, f5, f6, f18, f20, f21, f22, f23, f8, f9, f10, f11

t45 f1,f2, f3, f4, f5, f6, f18, f20, f21, f22, f23, f8, f10, f11

t46 f1,f2, f3, f4, f5, f6, f18, f20, f21, f22, f23, f8, f9, f11

t47 f1,f2, f3, f4, f5, f6, f18, f20, f21, f22, f23, f8, f11

t48 f1,f2, f3, f4, f5, f6, f18, f20, f21, f22, f23, f8, f9, f10

t49 f1,f2, f3, f4, f5, f6, f18, f20, f21, f22, f23, f8, f10

t50 f1,f2, f3, f4, f5, f6, f18, f20, f21, f22, f23, f8, f9

Appendix C 110

t51 f1,f2, f3, f4, f5, f6, f18, f20, f21, f23, f8, f10

t52 f1,f2, f3, f4, f5, f6, f18, f19, f21, f22, f23, f8, f9, f10, f11

t53 f1,f2, f3, f4, f5, f6, f18, f19, f21, f22, f23, f8, f10, f11

t54 f1,f2, f3, f4, f5, f6, f18, f19, f21, f22, f23, f8, f9, f11

t55 f1,f2, f3, f4, f5, f6, f18, f19, f21, f22, f23, f8, f11

t56 f1,f2, f3, f4, f5, f6, f18, f19, f21, f22, f23, f8, f9, f10

t57 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f18, f19, f21, f23, f8, f10

t58 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f18, f19, f20, f21, f22, f23, f8,

f9, f10, f11

t59 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f18, f19, f20, f21, f22, f23, f8,

f10, f11

t60 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f18, f19, f20, f21, f22, f23, f8,

f9, f11

t61 f1,f2, f3,f4,f12, f13,f14, f5, f6, f15, f16, f18, f19, f20,f21,f22,f23, f8, f11

t62 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f18, f19, f20, f21, f22, f23, f8,

f9, f10

t63 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f18, f19, f20, f21, f22, f23, f8,

f10

t64 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f18, f19, f20, f21, f22, f23, f8, f9

t65 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f17, f18, f19, f21, f22, f23, f8,

f9, f10

t66 f1,f2, f3,f4,f12,f13,f14,f5,f6,f15, f16, f17, f18, f19, f21, f22, f23, f8, f10

t67 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f17, f18, f19, f21, f22, f23, f8, f9

t68 f1,f2, f3, f4, f12, f13, f14, f5, f6, f15, f16, f17, f18, f19, f21, f23, f8, f10

t69 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f19, f20, f21, f22, f23, f8, f9, f10, f11

t70 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f19, f20, f21, f22, f23, f8, f10, f11

t71 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f19, f20, f21, f22, f23, f8, f9, f11

t72 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f19, f20, f21, f22, f23, f8, f11

t73 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f19, f20, f21, f22, f23, f8, f9, f10

t74 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f19, f20, f21, f22, f23, f8, f10

Appendix C 111

t75 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f19, f20, f21, f22, f23, f8, f9

t76 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f19, f20, f21, f23, f8, f10

t77 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f20, f21, f22, f23, f8, f9, f10, f11

t78 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f20, f21, f22, f23, f8, f10, f11

t79 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f20, f21, f22, f23, f8, f9, f11

t80 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f20, f21, f22, f23, f8, f11

t81 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f20, f21, f22, f23, f8, f9, f10

t82 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f20, f21, f22, f23, f8, f10

t83 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f20, f21, f22, f23, f8, f9

t84 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f20, f21, f23, f8, f10

t85 f1,f2, f3, f4, f12, f14, f5, f6, f15, f18, f19, f21, f22, f23, f8, f9, f10, f11

t86 f1,f2, f3, f4, f12, f13, f14, f5, f6, f7, f21, f22, f23, f24, f8, f11

t87 f1,f2, f3, f4, f12, f13, f14, f5, f6, f7, f21, f22, f23, f24, f8, f9, f10

t88 f1,f2, f3, f4, f12, f13, f14, f5, f6, f7, f21, f22, f23, f24, f8, f10

t89 f1,f2, f3, f4, f12, f13, f14, f5, f6, f7, f21, f22, f23, f24, f8, f9

t90 f1,f2, f3, f4, f12, f13, f14, f5, f7, f21, f22, f23, f24, f8, f9, f10, f11

t91 f1,f2, f3, f4, f12, f13, f14, f5, f7, f21, f22, f23, f24, f8, f10, f11

t92 f1,f2, f3, f4, f12, f13, f14, f5, f7, f21, f22, f23, f24, f8, f9, f11

t93 f1,f2, f3, f4, f12, f13, f14, f5, f7, f21, f22, f23, f24, f8, f11

t94 f1,f2, f3, f4, f12, f13, f14, f5, f7, f21, f22, f23, f24, f8, f9, f10

t95 f1,f2, f3, f4, f12, f14, f5, f6, f7, f15, f18, f19, f20, f21, f22, f23, f24, f8, f10

t96 f1,f2, f3, f4, f12, f14, f5, f6, f7, f15, f18, f19, f20, f21, f22, f23, f24, f8, f9

t97 f1,f2, f3, f4,f12,f14,f5, f7, f15, f18, f19, f20,f21,f22,f23, f24, f8, f9, f10, f11

t98 f1,f2, f3, f4, f12,f14, f5, f7, f15, f18, f19, f20,f21, f22,f23,f24, f8, f10, f11

t99 f1,f2, f3, f4, f12, f14, f5, f7, f15, f18, f19, f20, f21, f22, f23, f24, f8, f9, f11

t100 f1,f2, f3, f4, f12, f14, f5, f7, f15, f18, f19, f20, f21, f22, f23, f24, f8, f11

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Software Product Lines
	1.1.1 Motivation for Software Product Line Development
	1.1.2 Feature Model

	1.2 Software Product Line Testing
	1.3 Test Case Prioritization for SPL Testing
	1.3.1 Prioritization Criteria
	1.3.2 Evaluation Metric

	1.4 Problem Statement
	1.5 Research Question
	1.6 Research Methodology
	1.7 Thesis Organization

	2 Literature Review
	2.1 Prioritization Criteria based on Feature Coverage
	Devroey et al., 2014
	Henard et al., 2014
	Al-Hajjaji et al., 2014
	Wang et al., 2014
	Sánchez et al., 2014
	Al-Hajjaji et al., 2016
	Al-Hajjaji et al., 2017
	Al-Hajjaji et al., 2017 (1)

	2.2 Prioritization Criterion based on Feature
	Ensan et al., 2011
	Sánchez et al., 2014

	2.3 Prioritization Criteria based on Feature Coupling
	Sánchez et al., 2014

	2.4 Analysis and Comparison
	2.4.1 Gap Analysis

	3 Proposed Approach
	3.1 Proposed Prioritization Algorithm
	3.2 Proposed Criterion for Product Prioritization
	3.2.1 Feature Complexity
	 Use Case Model
	 Use Case Metrics

	3.2.2 Feature Coupling Complexity
	3.2.3 Combining Feature Complexity and Feature Coupling Complexity

	3.3 Example of Proposed Approach

	4 Implementation
	4.1 Implementation Details
	4.1.1 Test Suite
	4.1.2 Feature Complexity
	4.1.3 Feature Coupling Complexity
	4.1.4 Test Suite Prioritization

	5 Results and Discussion
	5.1 Case Studies
	5.1.1 E-Commerce SPL
	5.1.2 Social Network SPL
	5.1.3 Transport Network SPL

	5.2 Fault Injection
	5.3 Evaluation Metric
	5.3.1 Example

	5.4 Experiment 1. Evaluation of Proposed Criterion Based on Different values of
	5.4.1 Prioritized Test Suites Based on Proposed Criterion
	Prioritized list for E-Commerce
	Prioritized list for Social Network
	Prioritized list for Transport Network

	5.4.2 Comparison

	5.5 Experiment 2. Evaluation of Proposed and Existing Criteria
	5.5.1 Prioritized Test Suites Based on Existing and Proposed Criteria
	5.5.2 Comparison

	6 Conclusion and Future Work
	6.1 Future work

	Bibliography
	Appendices
	A Prioritized Test Suite for Subject Product Line
	B Subject Product Line
	C Test Suite for Subject Product Line

